Displaying 651 - 675 of 690 in total
Subject Area
Funder
Publication Year
License
Illinois Data Bank Dataset Search Results

Dataset Search Results

published: 2017-12-18
 
This dataset matches to a thesis of the same title: Can fair use be adequately taught to Librarians? Assessing Librarians' confidence and comprehension in explaining fair use following an expert workshop.
keywords: fair use; copyright
published: 2017-12-14
 
Objectives: This study follows-up on previous work that began examining data deposited in an institutional repository. The work here extends the earlier study by answering the following lines of research questions: (1) what is the file composition of datasets ingested into the University of Illinois at Urbana-Champaign campus repository? Are datasets more likely to be single file or multiple file items? (2) what is the usage data associated with these datasets? Which items are most popular? Methods: The dataset records collected in this study were identified by filtering item types categorized as "data" or "dataset" using the advanced search function in IDEALS. Returned search results were collected in an Excel spreadsheet to include data such as the Handle identifier, date ingested, file formats, composition code, and the download count from the item's statistics report. The Handle identifier represents the dataset record's persistent identifier. Composition represents codes that categorize items as single or multiple file deposits. Date available represents the date the dataset record was published in the campus repository. Download statistics were collected via a website link for each dataset record and indicates the number of times the dataset record has been downloaded. Once the data was collected, it was used to evaluate datasets deposited into IDEALS. Results: A total of 522 datasets were identified for analysis covering the period between January 2007 and August 2016. This study revealed two influxes occurring during the period of 2008-2009 and in 2014. During the first time frame a large number of PDFs were deposited by the Illinois Department of Agriculture. Whereas, Microsoft Excel files were deposited in 2014 by the Rare Books and Manuscript Library. Single file datasets clearly dominate the deposits in the campus repository. The total download count for all datasets was 139,663 and the average downloads per month per file across all datasets averaged 3.2. Conclusion: Academic librarians, repository managers, and research data services staff can use the results presented here to anticipate the nature of research data that may be deposited within institutional repositories. With increased awareness, content recruitment, and improvements, IRs can provide a viable cyberinfrastructure for researchers to deposit data, but much can be learned from the data already deposited. Awareness of trends can help librarians facilitate discussions with researchers about research data deposits as well as better tailor their services to address short-term and long-term research needs.
keywords: research data; research statistics; institutional repositories; academic libraries
published: 2017-12-20
 
The dataset contains processed model fields used to generate data, figures and tables in the Journal of Geophysical Research article "Investigating the linear dependence of direct and indirect radiative forcing on emission of carbonaceous aerosols in a global climate model." The processed data are monthly averaged cloud properties (CCN, CDNC and LWP) and forcing variables (DRF and IRF) at original CAM5 spatial resolution (1.9° by 2.5°). Raw model output fields from CAM5 simulations are available through NERSC upon request. Please find more detailed information in the ReadMe file.
keywords: carbonaceous aerosols; radiative forcing; emission; linearity
published: 2018-01-13
 
This dataset provides the time series (Aug. - Sep. 2016) data of sun-induced chlorophyll fluorescence, photosynthesis, photosynthetically active radiation, and associated vegetation indices that were collected in a soybean field in the farm of University of Illinois at Urbana and Champaign. Data contain 255 records and 6 variables (PPFD-IN: Photosynthetically active radiation; GPP-Gross Primary Production; SIF: Sun-Induced Fluorescence; NDVI: Normalized Difference Vegetation Index; Rededge: Rededge Index; Redege_NDVI: Rededge Normalized Difference Vegetation Index). The timestamp uses the standard time. Data are available from 8 am to 4 pm (corresponding to 9 am to 5 pm local time) every day.
keywords: sun-induced chlorophyll fluorescence; photosynthesis; soybean
published: 2018-02-22
 
Datasets used in the study, "OCTAL: Optimal Completion of Gene Trees in Polynomial Time," under review at Algorithms for Molecular Biology. Note: DS_STORE file in 25gen-10M folder can be disregarded.
keywords: phylogenomics; missing data; coalescent-based species tree estimation; gene trees
published: 2017-06-16
 
Table S1. Pollen types identified in the BCI and PNSL pollen rain data sets. Pollen types were identified to species when possible and assigned a life form based on descriptions provided in Croat, T.B. (1978). Taxa from BCI and PNSL were assigned a 1 if present in forest census data or a 0 if absent. The relative representation of each taxon has been provided for each extended record and by dry and wet season representation respectively. CA loadings are provided for axes 1 and 2 (Fig. 1).
keywords: pollen; identifications; abundance; data; BCI; PNSL; Panama
published: 2016-06-23
 
This dataset contains hourly traffic estimates (speeds) for individual links of the New York City road network for the years 2010-2013, estimated from New York City Taxis.
keywords: traffic estimates; traffic conditions; New York City
published: 2017-10-11
 
The International Registry of Reproductive Pathology Database is part of pioneering work done by Dr. Kenneth McEntee to comprehensively document thousands of disease cases studies. His large and comprehensive collection of case reports and physical samples was complimented by development of the International Registry of Reproductive Pathology Database in the 1980s. The original FoxPro Database files and a migrated access version were completed by the College of Veterinary Medicine in 2016. Access CSV files were completed by the University of Illinois Library in 2017.
keywords: Animal Pathology; Databases; Veterinary Medicine
published: 2017-11-15
 
Monthly water withdrawal records (total pumpage and per-capita consumption) for the City of Austin, Texas (2000-2014). Data were provided by Austin Water Utility.
keywords: Water use; Water conservation
published: 2017-10-10
 
This dataset contains ground motion data for Newmark Structural Engineering Laboratory (NSEL) Report Series 048, "Modification of ground motions for use in Central North America: Southern Illinois surface ground motions for structural analysis". The data are 20 individual ground motion time history records developed at each of the 10 sites (for a total of 200 ground motions). These accompanying ground motions are developed following the detailed procedure presented in Kozak et al. [2017].
keywords: earthquake engineering; ground motion records; southern Illinois seismic hazard; dynamic structural analysis; conditional mean spectrum
published: 2017-09-28
 
This is the dataset used in the Journal of Ecology publication of the same name. It is a site by species matrix of species relative abundances. The file BH.veg.data.csv contains a site by species matrix of species relative abundance (percent cover across all sampling quadrats within site). Data under the heading Year refers to sampling periods. Year 1 refers to the first set of samples taken between 1997 and 2000, Year 2 refers to the second set taken between 2002 and 2005, Year 3 refers to the third set taken between 2007 and 2010, and Year 4 refers to the fourth set taken between 2012 and 2015. All sites met Critical Trends Assessment Program (CTAP) size criteria of being at least 2 ha in size with a minimum of 500 m2 of suitable sampling area. The data in file BH.site.location.csv contains Public Land Survey System ranges and townships in which specific sites were located. All sites were located within the U.S. state of Illinois. More information about this dataset: Interested parties can request data from the Critical Trends Assessment Program, which was the source for the data on the wetlands in this study. More information on the program and data requests can be obtained by visiting the program webpage. Critical Trends Assessment Program, Illinois Natural History Survey. http://wwx.inhs.illinois.edu/research/ctap/
keywords: biodiversity; biotic homogenization; invasive species; Phalaris arundinacea; plant population and community dynamics; similarity index; wetlands
published: 2017-09-26
 
This file contains the supplemental appendix for the article "Farmer Preferences for Agricultural Soil Carbon Sequestration Schemes" published in Applied Economic Policy and Perspectives (accepted 2017).
keywords: appendix; carbon sequestration; tillage; choice experiment
published: 2017-09-06
 
Spire angle data for sinistral whelks of the family Busyconidae. Data focuses on spire angles, with some data on total shell length. Locality information is present for all modern specimens.
keywords: lightning whelk; sinistral whelk; spire angle; sourcing; Busycon; Cahokia; Spiro
published: 2017-07-29
 
This dataset contains the PartMC-MOSAIC simulations used in the article “Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion”. The data is organized as a set of folders, each folder representing a different scenario modeled. Each folder contains a series of NetCDF files, which are the output of the PartMC-MOSAIC simulation. They contain information on particle and gas properties, both of the biofuel burning plume and background. Input files for PartMC-MOSAIC are also included. This dataset was used during the open review process at Atmospheric Chemistry and Physics (ACP) and supports both the discussion paper and final article.
keywords: CCN; cloud condensation nuclei; activation; supersaturation; biofuel
published: 2017-06-16
 
Table S2. Raw pollen counts and climatic data for each seasonal sampling period. Climatic data reflects the average daily conditions observed over the duration samples were collected (˚C/day, mm/day, MJ/m2/day). Lycopodium counts and counts for each pollen taxon reflect the aggregated pollen sum from four sampling heights.
keywords: pollen; count; climate; data; BCI; PNSL; Panama
published: 2017-06-16
 
Table S3. Mean slope response for each predictive model used in the ecoinformatic analysis. Mean responses are provided for each seasonal and annual pollen data set analyzed from BCI and PNSL and are summarized by life form. Calculated p-values are provided for each model.
keywords: pollen; response; climate; ecoinformatics; BCI; PNSL; Panama
published: 2017-06-15
 
Datasets used in the study, "Optimal completion of incomplete gene trees in polynomial time using OCTAL," presented at WABI 2017.
keywords: phylogenomics; missing data; coalescent-based species tree estimation; gene trees
published: 2017-05-31
 
Dataset includes maternal antigen treatment and early-life antigen treatment for male zebra finches. Also includes data on beak coloration, measures of song complexity for each male, and female responses to treated males. Male beak color and song metadata: * MATID= Maternal Identity * MATTRT=Maternal antigen treatment prior to egg laying (KLH=keyhole limpet hemocyanin, LPS= lipopolysaccharide, PBS=phosphate buffered saline) * YGTRT= Young antigen treatment post-hatch (KLH=keyhole limpet hemocyanin, LPS= lipopolysaccharide, PBS=phosphate buffered saline)) * NESTBANDNUM= Nestling band number * Haptoglobin=haptoglobin levels at day 28 (mg/ml) * Mean TE= Mean number of total elements in that male's song * TE (z)= Z-transformed total elements * Mean UE=Mean number of unique elements in the song * UE (z)= z-transformed unique elements * mean phrases= Mean number of song phrases * Phrases (z)= z-transformed song phrases * Mean D= Mean song duration in seconds * D (z)=z-transformed song duration * B2 standard=beak brightness standardized so that lower values reflect less bright beaks * B2 (z)=z-transformed brightness * S1R standard= beak saturation at high wavelengths standardized so that lower values reflect less red beaks * S1R (z)=z-transformed S1R * S1U standard= beak saturation at low wavelengths standardized so that lower values reflect less red beaks * S1U (z)=z-transformed S1U * H4B standard= beak hue standardized so that lower values reflect less red beaks * H4B (z)=z-transformed H4B Female choice metadata: * Control Bird=PBS denotes that all control males received phosphate buffered saline * Treatment Bird= Treatment the male received (keyhole limpet hemocyanin (KLH) or lipopolysaccharide (LPS)) * Beak Wipes Control=# of beak wipes the female performed when on the control male side * Beak Wipes Treatment=# of beak wipes the female performed when on the "treatment male" side * Hops Control=# of hops female performed when on the control male side * Hops Treatment=# of hops female performed when on the treatment male side * Time Spent Near Control=amount of time (sec) female spent on the control male side * Time Spent Near Treatment=amount of time (sec) the female spent on the treatment male side
keywords: early-life; stress; immune response; phenotypic correlation; sexual signal; zebra finch;birdsongs; acoustic signals; beak coloration; mate selection
published: 2017-05-01
 
Indianapolis Int'l Airport to Urbana: Sampling Rate: 2 Hz Total Travel Time: 5901534 ms or 98.4 minutes Number of Data Points: 11805 Distance Traveled: 124 miles via I-74 Device used: Samsung Galaxy S6 Date Recorded: 2016-11-27 Parameters Recorded: * ACCELEROMETER X (m/s²) * ACCELEROMETER Y (m/s²) * ACCELEROMETER Z (m/s²) * GRAVITY X (m/s²) * GRAVITY Y (m/s²) * GRAVITY Z (m/s²) * LINEAR ACCELERATION X (m/s²) * LINEAR ACCELERATION Y (m/s²) * LINEAR ACCELERATION Z (m/s²) * GYROSCOPE X (rad/s) * GYROSCOPE Y (rad/s) * GYROSCOPE Z (rad/s) * LIGHT (lux) * MAGNETIC FIELD X (microT) * MAGNETIC FIELD Y (microT) * MAGNETIC FIELD Z (microT) * ORIENTATION Z (azimuth °) * ORIENTATION X (pitch °) * ORIENTATION Y (roll °) * PROXIMITY (i) * ATMOSPHERIC PRESSURE (hPa) * SOUND LEVEL (dB) * LOCATION Latitude * LOCATION Longitude * LOCATION Altitude (m) * LOCATION Altitude-google (m) * LOCATION Altitude-atmospheric pressure (m) * LOCATION Speed (kph) * LOCATION Accuracy (m) * LOCATION ORIENTATION (°) * Satellites in range * GPS NMEA * Time since start in ms * Current time in YYYY-MO-DD HH-MI-SS_SSS format Quality Notes: There are some things to note about the quality of this data set that you may want to consider while doing preprocessing. This dataset was taken continuously as a single trip, no stop was made for gas along the way making this a very long continuous dataset. It starts in the parking lot of the Indianapolis International Airport and continues directly towards a gas station on Lincoln Avenue in Urbana, IL. There are a couple parts of the trip where the phones orientation had to be changed because my navigation cut out. These times are easy to account for based on Orientation X/Y/Z change. I would also advise cutting out the first couple hundred points or the points leading up to highway speed. The phone was mounted in the cupholder in the front seat of the car.
keywords: smartphone; sensor; driving; accelerometer; gyroscope; magnetometer; gps; nmea; barometer; satellite
published: 2017-03-02
 
This data was collected between 2004 and 2010 at White River National Wildlife Refuge (WRNWR) and Saint Francis National Forest (SF). It was collected as part of two master’s and one PhD project at Arkansas State University USA studying Swainson’s Warbler habitat use, survival, and body condition.
keywords: Swainson’s Warbler; Limnothlypis swainsonii; flooding; natural disturbance; apparent survival; body condition
published: 2017-02-28
 
Leesburg, VA to Indianapolis, Indiana: Sampling Rate: 0.1 Hz Total Travel Time: 31100007 ms or 518 minutes or 8.6 hours Distance Traveled: 570 miles via I-70 Number of Data Points: 3112 Device used: Samsung Galaxy S4 Date Recorded: 2017-01-15 Parameters Recorded: * ACCELEROMETER X (m/s²) * ACCELEROMETER Y (m/s²) * ACCELEROMETER Z (m/s²) * GRAVITY X (m/s²) * GRAVITY Y (m/s²) * GRAVITY Z (m/s²) * LINEAR ACCELERATION X (m/s²) * LINEAR ACCELERATION Y (m/s²) * LINEAR ACCELERATION Z (m/s²) * GYROSCOPE X (rad/s) * GYROSCOPE Y (rad/s) * GYROSCOPE Z (rad/s) * LIGHT (lux) * MAGNETIC FIELD X (microT) * MAGNETIC FIELD Y (microT) * MAGNETIC FIELD Z (microT) * ORIENTATION Z (azimuth °) * ORIENTATION X (pitch °) * ORIENTATION Y (roll °) * PROXIMITY (i) * ATMOSPHERIC PRESSURE (hPa) * Relative Humidity (%) * Temperature (F) * SOUND LEVEL (dB) * LOCATION Latitude * LOCATION Longitude * LOCATION Altitude (m) * LOCATION Altitude-google (m) * LOCATION Altitude-atmospheric pressure (m) * LOCATION Speed (kph) * LOCATION Accuracy (m) * LOCATION ORIENTATION (°) * Satellites in range * GPS NMEA * Time since start in ms * Current time in YYYY-MO-DD HH-MI-SS_SSS format Quality Notes: There are some things to note about the quality of this data set that you may want to consider while doing preprocessing. This dataset was taken continuously but had multiple stops to refuel (without the data recording ceasing). This can be removed by parsing out all data that has a speed of 0. The mount for this dataset was fairly stable (as can be seen by the consistent orientation angle throughout the dataset). It was mounted tightly between two seats in the back of the vehicle. Unfortunately, the frequency for this dataset was set fairly low at one per ten seconds.
keywords: smartphone; sensor; driving; accelerometer; gyroscope; magnetometer; gps; nmea; barometer; satellite; temperature; humidity
published: 2017-02-23
 
GBS data from diverse sorghum lines. Project funded by DOE, ARPA-E, and startup funds to PJ Brown.
published: 2017-02-21
 
GBS data from biparental sorghum populations provided by Dr. Bill Rooney, TAMU. Data produced and analyzed by Pradeep Hirannaiah to study recombination in sorghum. Funding for this study was provided by the Sorghum Checkoff.
published: 2017-02-21
 
GBS data from diverse sorghum lines. Project funded by DOE, ARPA-E, and startup funds to PJ Brown.