Dataset for: "A Dual-Frequency Radar Retrieval of Snowfall Properties Using a Neural Network"
Dataset Description |
This is the dataset that accompanies the paper titled "A Dual-Frequency Radar Retrieval of Snowfall Properties Using a Neural Network", submitted for peer review in August 2020. Please see the github for the most up-to-date data after the revision process: https://github.com/dopplerchase/Chase_et_al_2020_NN Authors: Randy J. Chase, Stephen W. Nesbitt and Greg M. McFarquhar Corresponding author: Randy J. Chase (randyjc2@illinois.edu) Please email me if you have specific questions about units etc. 1) DDA/GMM database of scattering properties: base_df_DDA.csv
2) Synthetic Data used to train and test the neural network: Unrimed_simulation_wholespecturm_train_V2.nc, Unrimed_simulation_wholespecturm_test_V2.nc
3) Notebook for training the network using the synthetic database and Google Colab (tensorflow): Train_Neural_Network_Chase2020.ipynb
4) Trained tensorflow neural network: NN_6by8.h5
5) Scalers needed to apply the neural network: scaler_X_V2.pkl, scaler_y_V2.pkl.
The data for the analysis on the observations are not provided here because of the size of the radar data. Please see the GHRC website (https://ghrc.nsstc.nasa.gov/home/) if you wish to download the radar and in-situ data or contact me. We can coordinate transfering the exact datafiles used. The GPM-DPR data are avail. here: http://dx.doi.org/10.5067/GPM/DPR/GPM/2A/05 |
Subject |
Physical Sciences |
License |
CC0 |
Funder |
U.S. National Aeronautics and Space Administration (NASA)-Grant:80NSSC17K0439 |
Corresponding Creator |
Randy Chase |
Downloaded |
283 times |
| Version | DOI | Comment | Publication Date |
|---|---|---|---|
| 2 | 10.13012/B2IDB-0791318_V2 | Two additional files are added to the .zip folder and described in the data description as numbers 6 and 7. | 2020-11-18 |
| 1 | 10.13012/B2IDB-0791318_V1 | 2020-08-10 |
Contact the Research Data Service for help interpreting this log.
| RelatedMaterial | create: {"material_type"=>"Dataset", "availability"=>nil, "link"=>"https://doi.org/10.13012/B2IDB-0791318_V2", "uri"=>"10.13012/B2IDB-0791318_V2", "uri_type"=>"DOI", "citation"=>"", "dataset_id"=>1435, "selected_type"=>"Dataset", "datacite_list"=>"IsPreviousVersionOf"} | 2020-11-18T20:56:43Z |
| RelatedMaterial | create: {"material_type"=>"Code", "availability"=>nil, "link"=>" https://github.com/dopplerchase/Chase_et_al_2020_NN", "uri"=>" https://github.com/dopplerchase/Chase_et_al_2020_NN", "uri_type"=>"URL", "citation"=>" https://github.com/dopplerchase/Chase_et_al_2020_NN", "dataset_id"=>1435, "selected_type"=>"Code", "datacite_list"=>"IsSupplementedBy"} | 2020-08-10T16:14:44Z |