RelatedMaterial
|
create: {"material_type"=>"Presentation", "availability"=>nil, "link"=>"https://socialmediaie.github.io/tutorials/IC2S2_2020/Presentation.pdf", "uri"=>"https://socialmediaie.github.io/tutorials/IC2S2_2020/Presentation.pdf", "uri_type"=>"URL", "citation"=>"Mishra, S., Rezapour, R. & Diesner, J. (2020). Social Media Information Extraction Tutorials", "dataset_id"=>1073, "selected_type"=>"Presentation", "datacite_list"=>"IsSupplementTo"}
|
2020-08-04T21:22:43Z
|
RelatedMaterial
|
create: {"material_type"=>"Presentation", "availability"=>nil, "link"=>"https://socialmediaie.github.io/tutorials/HT2019/Tutorial-Slides-HT-Hof-Germany-17_09_2019.pdf", "uri"=>"https://socialmediaie.github.io/tutorials/HT2019/Tutorial-Slides-HT-Hof-Germany-17_09_2019.pdf", "uri_type"=>"URL", "citation"=>"Mishra, S., Diesner J., Hands on advanced machine learning for information extraction from tweets tasks, data, and open source tools. Sep, 2019", "dataset_id"=>1073, "selected_type"=>"Presentation", "datacite_list"=>"IsSupplementTo"}
|
2019-11-04T16:24:12Z
|
Dataset
|
update: {"description"=>["Trained models for multi-task multi-dataset learning for text classification as well as sequence tagging in tweets.\r\nClassification tasks include sentiment prediction, abusive content, sarcasm, and veridictality.\r\nSequence tagging tasks include POS, NER, Chunking, and SuperSenseTagging.\r\n\r\nModels were trained using: <a href=\"https://github.com/socialmediaie/SocialMediaIE/blob/master/SocialMediaIE/scripts/multitask_multidataset_classification_tagging.py\">https://github.com/socialmediaie/SocialMediaIE/blob/master/SocialMediaIE/scripts/multitask_multidataset_classification_tagging.py</a>\r\nSee <a href=\"https://github.com/socialmediaie/SocialMediaIE\">https://github.com/socialmediaie/SocialMediaIE</a> and <a href=\"https://socialmediaie.github.io\">https://socialmediaie.github.io</a> for details.\r\n\r\nIf you are using this data please cite: \r\nShubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929", "Trained models for multi-task multi-dataset learning for text classification as well as sequence tagging in tweets.\r\nClassification tasks include sentiment prediction, abusive content, sarcasm, and veridictality.\r\nSequence tagging tasks include POS, NER, Chunking, and SuperSenseTagging.\r\n\r\nModels were trained using: <a href=\"https://github.com/socialmediaie/SocialMediaIE/blob/master/SocialMediaIE/scripts/multitask_multidataset_classification_tagging.py\">https://github.com/socialmediaie/SocialMediaIE/blob/master/SocialMediaIE/scripts/multitask_multidataset_classification_tagging.py</a>\r\nSee <a href=\"https://github.com/socialmediaie/SocialMediaIE\">https://github.com/socialmediaie/SocialMediaIE</a> and <a href=\"https://socialmediaie.github.io\">https://socialmediaie.github.io</a> for details.\r\n\r\nIf you are using this data, please also cite the related article: \r\nShubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929"]}
|
2019-09-17T15:40:16Z
|
RelatedMaterial
|
update: {"uri"=>[nil, "https://github.com/socialmediaie/SocialMediaIE"], "uri_type"=>[nil, "URL"], "datacite_list"=>[nil, "IsSupplementedBy"]}
|
2019-09-17T15:39:01Z
|
RelatedMaterial
|
update: {"uri"=>[nil, "10.1145/3342220.3344929"], "uri_type"=>[nil, "DOI"], "datacite_list"=>[nil, "IsSupplementTo"]}
|
2019-09-17T15:39:01Z
|