Trained models for multi-task multi-dataset learning for text classification in tweets
Dataset Description |
Trained models for multi-task multi-dataset learning for text classification in tweets.
Models were trained using: https://github.com/socialmediaie/SocialMediaIE/blob/master/SocialMediaIE/scripts/multitask_multidataset_classification.py
If you are using this data, please also cite the related article:
|
Subject |
Social Sciences |
Keywords |
twitter; deep learning; machine learning; trained models; multi-task learning; multi-dataset learning; sentiment; sarcasm; abusive content; |
License |
CC BY |
Corresponding Creator |
Shubhanshu Mishra |
Downloaded |
4639 times |
| Version | DOI | Comment | Publication Date |
|---|---|---|---|
| 1 | 10.13012/B2IDB-1917934_V1 | 2019-09-17 |
Contact the Research Data Service for help interpreting this log.
| RelatedMaterial | update: {"note"=>[nil, ""], "feature"=>[nil, false]} | 2024-01-26T20:15:51Z |
| RelatedMaterial | update: {"note"=>[nil, ""], "feature"=>[nil, false]} | 2024-01-26T20:15:51Z |
| RelatedMaterial | update: {"citation"=>["\tShubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929", "Shubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929"], "note"=>[nil, ""], "feature"=>[nil, false]} | 2024-01-26T20:15:51Z |
| RelatedMaterial | update: {"note"=>[nil, ""], "feature"=>[nil, false]} | 2024-01-26T20:15:51Z |
| RelatedMaterial | create: {"material_type"=>"Presentation", "availability"=>nil, "link"=>"https://socialmediaie.github.io/tutorials/IC2S2_2020/Presentation.pdf", "uri"=>"https://socialmediaie.github.io/tutorials/IC2S2_2020/Presentation.pdf", "uri_type"=>"URL", "citation"=>"Mishra, S., Rezapour, R. & Diesner, J. (2020). Social Media Information Extraction Tutorials", "dataset_id"=>949, "selected_type"=>"Presentation", "datacite_list"=>"IsSupplementTo"} | 2020-08-04T21:26:03Z |
| RelatedMaterial | create: {"material_type"=>"Presentation", "availability"=>nil, "link"=>"https://socialmediaie.github.io/tutorials/HT2019/Tutorial-Slides-HT-Hof-Germany-17_09_2019.pdf", "uri"=>"https://socialmediaie.github.io/tutorials/HT2019/Tutorial-Slides-HT-Hof-Germany-17_09_2019.pdf", "uri_type"=>"URL", "citation"=>"Mishra, S., Diesner J., Hands on advanced machine learning for information extraction from tweets tasks, data, and open source tools. Sep, 2019", "dataset_id"=>949, "selected_type"=>"Presentation", "datacite_list"=>"IsSupplementTo"} | 2019-11-04T16:25:14Z |
| RelatedMaterial | create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1145/3342220.3344929", "uri"=>"10.1145/3342220.3344929", "uri_type"=>"DOI", "citation"=>"\tShubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929", "dataset_id"=>949, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo"} | 2019-09-17T15:46:24Z |
| RelatedMaterial | update: {"uri"=>[nil, "https://github.com/socialmediaie/SocialMediaIE"], "uri_type"=>[nil, "URL"], "datacite_list"=>[nil, "IsSupplementedBy"]} | 2019-09-17T15:46:24Z |