Dataset
|
update: {"publication_state"=>["file embargo", "released"]}
|
2021-05-14T08:00:15Z
|
Dataset
|
update: {"publication_state"=>["released", "file embargo"]}
|
2021-04-12T21:55:36Z
|
Dataset
|
update: {"publication_state"=>["file embargo", "released"]}
|
2021-04-09T16:54:23Z
|
Dataset
|
update: {"publication_state"=>["released", "file embargo"]}
|
2021-04-09T16:54:22Z
|
Dataset
|
update: {"description"=>["- The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated.<br />- The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<br />- Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n", "- The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated.<br /><br />- The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<br />- Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n"]}
|
2021-04-09T16:54:21Z
|
Dataset
|
update: {"publication_state"=>["file embargo", "released"]}
|
2021-04-09T16:52:44Z
|
Dataset
|
update: {"publication_state"=>["released", "file embargo"]}
|
2021-04-09T16:52:43Z
|
Dataset
|
update: {"description"=>["- The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated. <br />- The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<br />- Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n", "- The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated.<br />- The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<br />- Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n"]}
|
2021-04-09T16:52:43Z
|
Dataset
|
update: {"publication_state"=>["file embargo", "released"]}
|
2021-04-09T16:42:37Z
|
Dataset
|
update: {"publication_state"=>["released", "file embargo"]}
|
2021-04-09T16:42:36Z
|
Dataset
|
update: {"description"=>["The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated. <br /><b />The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<br /><b />Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n", "- The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated. <br />- The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<br />- Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n"]}
|
2021-04-09T16:42:36Z
|
Dataset
|
update: {"publication_state"=>["file embargo", "released"]}
|
2021-04-09T16:41:34Z
|
Dataset
|
update: {"publication_state"=>["released", "file embargo"]}
|
2021-04-09T16:41:33Z
|
Dataset
|
update: {"description"=>["The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated. <br />The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<b />Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n", "The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated. <br /><b />The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<br /><b />Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n"]}
|
2021-04-09T16:41:33Z
|
Dataset
|
update: {"publication_state"=>["file embargo", "released"]}
|
2021-04-09T16:34:15Z
|
Dataset
|
update: {"publication_state"=>["released", "file embargo"]}
|
2021-04-09T16:34:13Z
|
Dataset
|
update: {"description"=>["The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated. The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\nFilenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n", "The aim of this research was to evaluate the novel dietary fiber source, miscanthus grass, in comparison to traditional fiber sources, and their effects on the microbiota of healthy adult cats. Four dietary treatments, cellulose (CO), miscanthus grass fiber (MF), a blend of miscanthus fiber and tomato pomace (MF+TP), or beet pulp (BP) were evaluated. <br />The study was conducted using a completely randomized design with twenty-eight neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 yr; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). Total DNA from fresh fecal samples was extracted using Mo-Bio PowerSoil kits (MO BIO Laboratories, Inc., Carlsbad, CA). Amplification of the 292 bp-fragment of V4 region from the 16S rRNA gene was completed using a Fluidigm Access Array (Fluidigm Corporation, South San Francisco, CA). Paired-end Illumina sequencing was performed on a MiSeq using v3 reagents (Illumina Inc., San Diego, CA) at the Roy J. Carver Biotechnology Center at the University of Illinois.\r\n<b />Filenames are composed of animal name identifier, diet (BP= beet pulp; CO= cellulose; MF= miscanthus grass fiber; TP= blend of miscanthus fiber and tomato pomace).\r\n"], "keywords"=>["cats, dietary fiber, fecal microbiota, miscanthus grass, nutrient digestibility, postbiotics. ", "cats; dietary fiber; fecal microbiota; miscanthus grass; nutrient digestibility; postbiotics"]}
|
2021-04-09T16:34:13Z
|
Dataset
|
update: {"publication_state"=>["file embargo", "released"]}
|
2021-04-09T16:09:52Z
|