Dataset Description
|
___________________________________SUMMARY
This dataset contains derivative data from concurrent fMRI and scalp EEG recordings used in:
Mostame Parham, Wirsich Jonathan, Alderson Thomas H, Ridley Ben, Giraud Anne-Lise, Carmichael David W, Vulliemoz Serge, Guye Maxime, Lemieux Louis, Sadaghiani Sepideh (2024) A multiplex of connectome trajectories enables several connectivity patterns in parallel eLife 13:RP98777. doi: https://doi.org/10.7554/eLife.98777.3
___________________________________RAW DATA
The data has been originally published and described as part of other studies (Morillon et al., 2010; Sadaghiani et al., 2012). Briefly, 10 minutes of eyes-closed resting state were analyzed from 26 healthy subjects (average age = 24.39 years; range: 18-31 years; 8 females) with no history of psychiatric or neurological disorders. Informed consent was given by each participant and the study was approved by the local Research Ethics Committee (CPP Ile de France III). FMRI was acquired using a 3T Siemens Tim Trio scanner with a GE-EPI pulse sequence (TR = 2 s; TE = 50 ms; 40 slices; 300 volumes; field of view: 192×192; voxel size: 3×3×3 mm3). Structural T1-weighted scan were acquired using the MPRAGE pulse sequence (176 slices; field of view: 256×256; voxel size: 1×1×1 mm3). 62-channel scalp EEG (Easycap, with an additional EOG and an ECG channel) was recorded using an MR-compatible amplifier (BrainAmp MR, Brain Products) at 5Hz sampling rate.
___________________________________PREPROCESSING
fMRI and EEG data were preprocessed with standard preprocessing steps as explained in detail elsewhere (Wirsich et al., 2020). In brief, fMRI underwent standard slice-time correction, spatial realignment (SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Structural T1-weighted images were processed using Freesurfer (recon-all, v6.0.0, https://surfer.nmr.mgh.harvard.edu/) in order to perform non-uniformity and intensity correction, skull stripping and gray/white matter segmentation. The cortex was parcellated into 68 regions of the Desikan-Kiliany atlas (Desikan et al., 2006). This atlas was chosen because —as an anatomical parcellation— avoids biases towards one or the other functional data modality. The T1 images of each subject and the Desikan-Killiany were co-registered to the fMRI images (FSL-FLIRT 6.0.2, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). We extracted signals of no interest such as the average signals of cerebrospinal fluid (CSF) and white matter from manually defined regions of interest (ROI, 5 mm sphere, Marsbar Toolbox 0.44, http://marsbar.sourceforge.net) and regressed out of the BOLD timeseries along with 6 rotation, translation motion parameters and global gray matter signal (Wirsich et al., 2017a). Then we bandpass-filtered the timeseries at 0.009–0.08 Hz. Average timeseries of each region was then used to calculate connectivity.
EEG underwent gradient and cardio-ballistic artifact removal using Brain Vision Analyzer software (Allen et al., 1998, 2000) and was down-sampled to 250 Hz. EEG was projected into source space using the Tikhonov-regularized minimum norm in Brainstorm software (Baillet et al., 2001; Tadel et al., 2011). Source activity was then averaged to the 68 regions of the Desikan-Killiany atlas. Band-limited EEG signals in each canonical frequency band and every atlas region were then used to calculate frequency-specific connectome dynamics. Note that the MEG-ROI-nets toolbox in the OHBA Software Library (OSL; https://ohba-analysis.github.io/osl-docs/) was used to minimize source leakage in the band-limited source-localized EEG data (Colclough et al., 2015).
___________________________________FOLDER STRUCTURE
The dataset includes five separate folders as described below:
1) EEGfMRI_dFC folder: connectome dynamics of scalp data
This folder contains 26 single MATLAB (.mat) files for each subject. Inside each `.mat` is a structure with fields `A`, `B`, and `C`, corresponding to fMRI, amplitude-coupling, and phase-coupling connectome dynamics, respectively. The fMRI data are 3-dimensional (ROI × ROI × timepoints). The EEG data are stored in a 1×5 cell array (Delta, Theta, Alpha, Beta, Gamma), each cell containing a 3-D ROI × ROI × timepoints matrix.
2) EEGfMRI_dFC_SourceOrtho foldeR: connectome dynamics of source-orthogonalized scalp data
Same format as above, except that EEG connectome dynamics are derived from source-orthogonalized signals. The MEG-ROI-nets toolbox in the OHBA Software Library (OSL; https://ohba-analysis.github.io/osl-docs/) was used to minimize source leakage in the band-limited, source-localized EEG data (Colclough et al., 2015).
3-5) Cross-modal Recurrence Plot (CRP) data
Each subject has an Excel file with five sheets (Delta through Gamma), corresponding to the five frequency bands. Each sheet contains a 2-D CRP matrix (rows = fMRI timepoints, columns = band-limited EEG timepoints).
- Scalp EEG–fMRI CRPs (CRP_EEGfMRI and CRP_EEGfMRI_SourceOrtho folder): two versions (with and without source-orthogonalization), each has 52 Excel files, including amplitude- and phase-coupling CRPs.
- Intracranial EEG–fMRI CRPs (CRP_iEEGfMRI folder): one version, 27 Excel files, containing three cases: amplitude coupling, HRF-convolved amplitude coupling, and phase coupling.
|