Illinois Data Bank

Airyscan confocal superresolution images of fossil and modern pollen of Amherstieae (Fabaceae)

This dataset includes a total of 501 images of 42 fossil specimens of Striatopollis and 459 specimens of 45 extant species of the tribe Amherstieae-Fabaceae. These images were taken using Airyscan confocal superresolution microscopy at 630X magnification (63x/NA 1.4 oil DIC). The images are in the CZI file format. They can be opened using Zeiss propriety software (Zen, Zen lite) or in ImageJ. More information on how to open CZI files can be found here: [https://www.zeiss.com/microscopy/us/products/microscope-software/zen/czi.html#microscope---image-data].

Life Sciences
Striatopollis catatumbus; superresolution microscopy; Cenozoic; tropics; Zeiss; CZI; striate pollen.
CC0
U.S. National Science Foundation (NSF)-Grant:NSF-DBI-1262561 to S.W.P.
Surangi Punyasena
3169 times
Version DOI Comment Publication Date
1 10.13012/B2IDB-9133967_V1 2020-10-20

2.52 KB File
4.04 GB File
520 MB File
3.31 GB File
1.23 GB File
12.6 GB File
1.06 GB File
488 MB File
4.46 GB File
792 MB File
1.26 GB File
5.38 GB File
1.15 GB File
17 GB File
43.1 KB View File
838 MB File
923 MB File
464 MB File
1.39 GB File

Contact the Research Data Service for help interpreting this log.

RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.revpalbo.2023.104860", "uri"=>"10.1016/j.revpalbo.2023.104860", "uri_type"=>"DOI", "citation"=>" O.J. Wilson, The 3D Pollen Project: An open repository of three-dimensional data for outreach, education and research, Review of Palaeobotany and Palynology (2023), https://doi.org/10.1016/j.revpalbo.2023.104860\r\n", "dataset_id"=>897, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2023-02-16T19:26:32Z
Creator update: {"email"=>["punyasena@life.illinois.edu", "spunya1@illinois.edu"]} 2021-03-23T15:17:57Z
Dataset update: {"corresponding_creator_email"=>["punyasena@life.illinois.edu", "spunya1@illinois.edu"]} 2021-03-23T15:17:57Z
Funder create: {"name"=>"U.S. National Science Foundation (NSF)", "identifier"=>"10.13039/100000001", "identifier_scheme"=>"DOI", "grant"=>"NSF-DBI-1262561 to S.W.P. ", "dataset_id"=>897, "code"=>"NSF"} 2021-03-23T15:16:44Z
RelatedMaterial update: {"citation"=>["Ingrid C. Romeroa, Shu Kong, Charless C. Fowlkes, Carlos Jaramillod, Michael A. Urban, Francisca Oboh-Ikuenobe, Carlos D’Apolito, and Surangi W. Punyasena. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. PNAS first published October 23, 2020; https://doi.org/10.1073/pnas.2007324117", "Ingrid C. Romero, Shu Kong, Charless C. Fowlkes, Carlos Jaramillo, Michael A. Urban, Francisca Oboh-Ikuenobe, Carlos D’Apolito, and Surangi W. Punyasena. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. PNAS first published October 23, 2020; https://doi.org/10.1073/pnas.2007324117"]} 2021-03-23T15:12:38Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1073/pnas.2007324117", "uri"=>"10.1073/pnas.2007324117", "uri_type"=>"DOI", "citation"=>"Ingrid C. Romeroa, Shu Kong, Charless C. Fowlkes, Carlos Jaramillod, Michael A. Urban, Francisca Oboh-Ikuenobe, Carlos D’Apolito, and Surangi W. Punyasena. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. PNAS first published October 23, 2020; https://doi.org/10.1073/pnas.2007324117", "dataset_id"=>897, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo"} 2020-10-26T21:45:29Z
RelatedMaterial create: {"material_type"=>"Code", "availability"=>nil, "link"=>"https://github.com/aimerykong/deepPollen", "uri"=>"https://github.com/aimerykong/deepPollen", "uri_type"=>"URL", "citation"=>"https://github.com/aimerykong/deepPollen", "dataset_id"=>897, "selected_type"=>"Code", "datacite_list"=>"IsSupplementedBy"} 2020-10-26T21:45:29Z
Dataset update: {"subject"=>["", "Life Sciences"]} 2020-10-26T21:45:29Z
Dataset update: {"publication_state"=>["metadata embargo", "released"]} 2020-10-20T06:00:06Z
Research Data Service Illinois Data Bank
Access and Use Policies Web Privacy Notice Contact Us