Illinois Data Bank - Dataset

Version DOI Comment Publication Date
1 10.13012/B2IDB-9133967_V1 2020-10-20

2.52 KB File
4.04 GB File
520 MB File
3.31 GB File
1.23 GB File
12.6 GB File
1.06 GB File
488 MB File
4.46 GB File
792 MB File
1.26 GB File
5.38 GB File
1.15 GB File
17 GB File
43.1 KB View File
838 MB File
923 MB File
464 MB File
1.39 GB File

Contact the Research Data Service for help interpreting this log.

RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.revpalbo.2023.104860", "uri"=>"10.1016/j.revpalbo.2023.104860", "uri_type"=>"DOI", "citation"=>" O.J. Wilson, The 3D Pollen Project: An open repository of three-dimensional data for outreach, education and research, Review of Palaeobotany and Palynology (2023), https://doi.org/10.1016/j.revpalbo.2023.104860\r\n", "dataset_id"=>897, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2023-02-16T19:26:32Z
Creator update: {"email"=>["punyasena@life.illinois.edu", "spunya1@illinois.edu"]} 2021-03-23T15:17:57Z
Dataset update: {"corresponding_creator_email"=>["punyasena@life.illinois.edu", "spunya1@illinois.edu"]} 2021-03-23T15:17:57Z
Funder create: {"name"=>"U.S. National Science Foundation (NSF)", "identifier"=>"10.13039/100000001", "identifier_scheme"=>"DOI", "grant"=>"NSF-DBI-1262561 to S.W.P. ", "dataset_id"=>897, "code"=>"NSF"} 2021-03-23T15:16:44Z
RelatedMaterial update: {"citation"=>["Ingrid C. Romeroa, Shu Kong, Charless C. Fowlkes, Carlos Jaramillod, Michael A. Urban, Francisca Oboh-Ikuenobe, Carlos D’Apolito, and Surangi W. Punyasena. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. PNAS first published October 23, 2020; https://doi.org/10.1073/pnas.2007324117", "Ingrid C. Romero, Shu Kong, Charless C. Fowlkes, Carlos Jaramillo, Michael A. Urban, Francisca Oboh-Ikuenobe, Carlos D’Apolito, and Surangi W. Punyasena. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. PNAS first published October 23, 2020; https://doi.org/10.1073/pnas.2007324117"]} 2021-03-23T15:12:38Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1073/pnas.2007324117", "uri"=>"10.1073/pnas.2007324117", "uri_type"=>"DOI", "citation"=>"Ingrid C. Romeroa, Shu Kong, Charless C. Fowlkes, Carlos Jaramillod, Michael A. Urban, Francisca Oboh-Ikuenobe, Carlos D’Apolito, and Surangi W. Punyasena. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy. PNAS first published October 23, 2020; https://doi.org/10.1073/pnas.2007324117", "dataset_id"=>897, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo"} 2020-10-26T21:45:29Z
RelatedMaterial create: {"material_type"=>"Code", "availability"=>nil, "link"=>"https://github.com/aimerykong/deepPollen", "uri"=>"https://github.com/aimerykong/deepPollen", "uri_type"=>"URL", "citation"=>"https://github.com/aimerykong/deepPollen", "dataset_id"=>897, "selected_type"=>"Code", "datacite_list"=>"IsSupplementedBy"} 2020-10-26T21:45:29Z
Dataset update: {"subject"=>["", "Life Sciences"]} 2020-10-26T21:45:29Z
Dataset update: {"publication_state"=>["metadata embargo", "released"]} 2020-10-20T06:00:06Z