Illinois Data Bank - Dataset

Version DOI Comment Publication Date
1 10.13012/J8PN93H8 2016-05-19

6.66 GB File
8 GB File
7.08 GB File
6.91 GB File
90.8 KB View File
2.69 KB File

Contact the Research Data Service for help interpreting this log.

RelatedMaterial create: {"material_type"=>"Preprint", "availability"=>nil, "link"=>"https://doi.org/10.48550/arXiv.2412.16632", "uri"=>"10.48550/arXiv.2412.16632", "uri_type"=>"DOI", "citation"=>"Brar, A.S., Su, R., & Zardini, G. (2024). Vehicle Rebalancing Under Adherence Uncertainty. https://doi.org/10.48550/arXiv.2412.16632", "dataset_id"=>13, "selected_type"=>"Other", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2025-01-10T17:39:47Z
RelatedMaterial update: {"note"=>[nil, ""]} 2025-01-10T17:39:47Z
Dataset update: {"publisher"=>["University of Illinois at Urbana-Champaign", "University of Illinois Urbana-Champaign"]} 2025-01-10T17:39:47Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/TITS.2024.3440836", "uri"=>"10.1109/TITS.2024.3440836", "uri_type"=>"DOI", "citation"=>"M. Zhao, M. R. Gahrooei and M. Ilbeigi, \"Change Detection in Partially Observed Large-Scale Traffic Network Data,\" in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2024.3440836", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2024-08-26T14:51:26Z
RelatedMaterial update: {"material_type"=>["Article", "Conference paper"], "selected_type"=>["Article", "Other"]} 2024-08-01T16:44:26Z
RelatedMaterial update: {"note"=>[nil, ""]} 2024-08-01T16:44:26Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/IE61493.2024.10599906", "uri"=>"10.1109/IE61493.2024.10599906", "uri_type"=>"DOI", "citation"=>"K. Bochenina and L. Ruotsalainen, \"A reinforcement learning-based metaheuristic algorithm for on-demand ride-pooling,\" 2024 International Conference on Intelligent Environments (IE), Ljubljana, Slovenia, 2024, pp. 117-123, doi: 10.1109/IE61493.2024.10599906.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2024-08-01T16:43:07Z
RelatedMaterial update: {"note"=>[nil, ""]} 2024-08-01T16:43:07Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>" https://doi.org/10.48550/arXiv.2407.08238", "uri"=>"10.48550/arXiv.2407.08238", "uri_type"=>"DOI", "citation"=>"Brar, A.S., Su, R., Zardini, G., & Kaur, J. (2024). Integrated User Matching and Pricing in Round-Trip Car-Sharing. doi\" \r\nhttps://doi.org/10.48550/arXiv.2407.08238", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2024-07-16T15:42:49Z
RelatedMaterial update: {"note"=>[nil, ""]} 2024-07-16T15:42:49Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/TDSC.2024.3398994", "uri"=>"10.1109/TDSC.2024.3398994", "uri_type"=>"DOI", "citation"=>"Z. You, X. Dong, X. Liu, S. Gao, Y. Wang and Y. Shen. 2024. Location Privacy Preservation Crowdsensing with Federated Reinforcement Learning. IEEE Transactions on Dependable and Secure Computing, doi: 10.1109/TDSC.2024.3398994.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2024-05-20T18:05:15Z
RelatedMaterial update: {"note"=>[nil, ""]} 2024-05-20T18:05:14Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.48550/arXiv.2404.00243", "uri"=>"10.48550/arXiv.2404.00243", "uri_type"=>"DOI", "citation"=>"Yu, J., Duan, Y., Xu, L., Chen, C., Liu, S., Chen, L., Liu, K., Yang, F., & Guo, N. (2024). DSFNet: Learning Disentangled Scenario Factorization for Multi-Scenario Route Ranking. doi: https://doi.org/10.48550/arXiv.2404.00243", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2024-04-05T15:10:27Z
RelatedMaterial update: {"link"=>["http://dx.doi.org/10.1007/s00180-016-0686-y", "https://doi.org/10.1007/s00180-016-0686-y"], "citation"=>["Grzegorczyk, M. & Shafiee Kamalabad, M. Comput Stat (2017) 32: 1. doi:10.1007/s00180-016-0686-y", "Grzegorczyk, M., Shafiee Kamalabad, M. Comparative evaluation of various frequentist and Bayesian non-homogeneous Poisson counting models. Comput Stat 32, 1–33 (2017). https://doi.org/10.1007/s00180-016-0686-y"]} 2024-04-01T15:32:40Z
RelatedMaterial update: {"link"=>["http://dx.doi.org/10.1371/journal.pone.0167267", "https://doi.org/10.1371/journal.pone.0167267"]} 2024-04-01T15:32:40Z
RelatedMaterial update: {"uri_type"=>["", "DOI"]} 2024-04-01T15:27:30Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsCitedBy"]} 2024-04-01T14:58:09Z
RelatedMaterial update: {"uri"=>["", "https://github.com/Lab-Work/gpsresilience"], "uri_type"=>["", "URL"], "citation"=>["", "https://github.com/Lab-Work/gpsresilience"]} 2024-04-01T14:58:09Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsSupplementTo"]} 2024-04-01T14:58:09Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo", "IsCitedBy"]} 2024-04-01T14:58:09Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsSupplementTo"]} 2024-04-01T14:58:09Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsCitedBy"]} 2024-04-01T14:58:09Z
RelatedMaterial update: {"note"=>[nil, ""]} 2024-04-01T14:58:09Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/TITS.2024.3368101", "uri"=>"10.1109/TITS.2024.3368101", "uri_type"=>"DOI", "citation"=>"M. Kronmueller, A. Fielbaum and J. Alonso-Mora. 2024. \"Reducing the Minimal Fleet Size by Delaying Individual Tasks,\" in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2024.3368101.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2024-03-18T17:28:56Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2024-03-18T17:28:56Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>" https://doi.org/10.48550/arXiv.2402.00344", "uri"=>"10.48550/arXiv.2402.00344", "uri_type"=>"DOI", "citation"=>"Filho, J.A., Silva, C.T., Stuerzlinger, W., & Nedel, L. (2024). Reimagining TaxiVis through an Immersive Space-Time Cube metaphor and reflecting on potential benefits of Immersive Analytics for urban data exploration. ArXiv, abs/2402.00344.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2024-02-12T16:24:35Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2024-02-12T16:24:35Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>" https://doi.org/10.48550/arXiv.2312.03408", "uri"=>"10.48550/arXiv.2312.03408", "uri_type"=>"DOI", "citation"=>"Li, H., Li, Y., Wang, H., Zeng, J., Cai, P., Xu, H., Lin, D., Yan, J., Xu, F., Xiong, L., Wang, J., Zhu, F., Yan, K., Xu, C., Wang, T., Mu, B., Ren, S., Peng, Z., & Qiao, Y. (2023). Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2023-12-11T20:33:59Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-11-29T19:52:58Z
RelatedMaterial update: {"citation"=>["B. Donovan and D. Work. “Using coarse GPS data to quantify city-scale transportation system resilience to extreme events.” presented at the Transportation Research Board 94th Annual Meeting, August 2014.", "Donovan, B., & Work, D.B. (2015). Using coarse GPS data to quantify city-scale transportation system resilience to extreme events. ArXiv, abs/1507.06011."], "datacite_list"=>["IsSupplementTo,IsCitedBy", "IsSupplementTo"]} 2023-11-29T19:52:58Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1007/s00521-023-09127-2", "uri"=>"10.1007/s00521-023-09127-2", "uri_type"=>"DOI", "citation"=>"Zhang, S., Hu, X., Chen, J. et al. An effective variational auto-encoder-based model for traffic flow imputation. Neural Comput & Applic (2023). https://doi.org/10.1007/s00521-023-09127-2", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2023-11-27T15:57:38Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-11-27T15:57:38Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.trc.2023.104326", "uri"=>"10.1016/j.trc.2023.104326", "uri_type"=>"DOI", "citation"=>"Ze Zhou, Claudio Roncoli, Charalampos Sipetas. 2023. Optimal matching for coexisting ride-hailing and ridesharing services considering pricing fairness and user choices. Transportation Research Part C: Emerging Technologies. doi: https://doi.org/10.1016/j.trc.2023.104326", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2023-09-18T15:38:25Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-09-18T15:38:25Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/ICCCN58024.2023.10230178", "uri"=>"10.1109/ICCCN58024.2023.10230178", "uri_type"=>"DOI", "citation"=>"F. Liang, X. Liu, N. A. Kose, K. Gundogan and W. Yu, \"Towards Trajectory Prediction-Based UAV Deployment in Smart Transportation Systems,\" 2023 32nd International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 2023, pp. 1-9, doi: 10.1109/ICCCN58024.2023.10230178.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2023-09-05T20:24:35Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-09-05T20:24:35Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://scholarsjunction.msstate.edu/td/5941", "uri"=>"https://scholarsjunction.msstate.edu/td/5941", "uri_type"=>"URL", "citation"=>"Shahid, Amna, \"Resource optimization of edge servers dealing with priority-based workloads by utilizing\r\nservice level objective-aware virtual rebalancing\" (2023). Theses and Dissertations. 5941. https://scholarsjunction.msstate.edu/td/5941 ", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy", "note"=>nil, "feature"=>nil} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial update: {"note"=>[nil, ""], "feature"=>[nil, false]} 2023-08-21T19:29:11Z
RelatedMaterial create: {"material_type"=>"Conference paper", "availability"=>nil, "link"=>"https://my.ece.msstate.edu/faculty/skhan/pub/S_K_2023_Cloudsummit.pdf", "uri"=>"https://my.ece.msstate.edu/faculty/skhan/pub/S_K_2023_Cloudsummit.pdf", "uri_type"=>"URL", "citation"=>"Amna Shahid, Peng Kang, Palden Lama, and Samee U. Khan. 2023. Some New Observations on SLO-aware Edge Stream Processing. IEEE Cloud Summit 2023.\r\n", "dataset_id"=>13, "selected_type"=>"Other", "datacite_list"=>"IsCitedBy"} 2023-07-31T14:17:32Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsCitedBy"]} 2023-07-27T15:15:55Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsCitedBy"]} 2023-07-27T15:15:55Z
RelatedMaterial update: {"citation"=>["\r\nExport Formats\r\nBibTeX | EndNote | ACM Ref\r\n\r\nJacek Sroka, Artur Leśniewski, Mirosław Kowaluk, Krzysztof Stencel, and Jerzy Tyszkiewicz. 2017. Towards minimal algorithms for big data analytics with spreadsheets. In Proceedings of the 4th Algorithms and Systems on MapReduce and Beyond (BeyondMR'17). ACM, New York, NY, USA, Article 1, 4 pages. DOI: https://doi.org/10.1145/3070607.3075961", "Jacek Sroka, Artur Leśniewski, Mirosław Kowaluk, Krzysztof Stencel, and Jerzy Tyszkiewicz. 2017. Towards minimal algorithms for big data analytics with spreadsheets. In Proceedings of the 4th Algorithms and Systems on MapReduce and Beyond (BeyondMR'17). ACM, New York, NY, USA, Article 1, 4 pages. DOI: https://doi.org/10.1145/3070607.3075961"], "datacite_list"=>["IsSupplementTo,IsCitedBy", "IsCitedBy"]} 2023-07-27T15:15:55Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo", "IsCitedBy"]} 2023-07-27T15:15:55Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsCitedBy"]} 2023-07-27T15:15:55Z
RelatedMaterial update: {"datacite_list"=>["IsSupplementTo,IsCitedBy", "IsCitedBy"]} 2023-07-27T15:15:55Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1049/itr2.12376", "uri"=>"10.1049/itr2.12376", "uri_type"=>"DOI", "citation"=>"Xue, S., Song, R., He, S., Li, G., Chi, J.: Passenger-perception dynamic ridesharing service based on parallel technology. IET Intell. Transp.\r\nSyst. 1–20 (2023). https://doi.org/10.1049/itr2.12376", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2023-05-24T20:21:21Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882567", "uri"=>"10.1109/FUZZ-IEEE55066.2022.9882567", "uri_type"=>"DOI", "citation"=>"K. Kiersztyn and A. Kiersztyn, \"Fuzzy Rule-based Outlier Detector,\" 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2022, pp. 1-7, doi: 10.1109/FUZZ-IEEE55066.2022.9882567.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2022-09-20T20:50:52Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.3390/su141710648", "uri"=>"10.3390/su141710648", "uri_type"=>"DOI", "citation"=>"Tubagus, Robbi Megantara, Sudradjat Supian, and Diah Chaerani. 2022. \"Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model Under Uncertainty.\" Sustainability 14 (17): 10648. doi:https://doi.org/10.3390/su141710648.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2022-09-20T20:48:36Z
RelatedMaterial update: {"datacite_list"=>["", "IsSupplementedBy"]} 2022-09-15T15:59:48Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>" https://doi.org/10.48550/arXiv.2207.14440", "uri"=>"10.48550/arXiv.2207.14440", "uri_type"=>"DOI", "citation"=>"Mahendran, A., Thompson, H., & McGree, J.M. (2022). A model robust sub-sampling approach for Generalised Linear Models in Big data settings. doi:\r\nhttps://doi.org/10.48550/arXiv.2207.14440\r\n", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2022-08-08T16:43:22Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.joep.2022.102535", "uri"=>"10.1016/j.joep.2022.102535", "uri_type"=>"DOI", "citation"=>"Hanna Hoover. 2022. Nudges as norms: Evidence from the NYC taxi cab industry. Journal of Economic Psychology. doi: https://doi.org/10.1016/j.joep.2022.102535", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2022-06-27T16:33:16Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.cie.2022.108187", "uri"=>"10.1016/j.cie.2022.108187", "uri_type"=>"DOI", "citation"=>"Tran, D.H., Leyman, P., Causmaecker, P.D., Adaptive passenger-finding recommendation system for taxi drivers with load balancing problem, Computers & Industrial Engineering\r\n(2022), doi: https://doi.org/10.1016/j.cie.2022.108187.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2022-04-26T20:15:34Z
RelatedMaterial update: {"uri"=>["", "http://www2.cs.uic.edu/~urbcomp2013/urbcomp2016/papers/Reducing.pdf"], "uri_type"=>["", "URL"], "datacite_list"=>["", "IsCitedBy"]} 2021-10-28T18:27:48Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1145/3474717.3484209", "uri"=>"10.1145/3474717.3484209", "uri_type"=>"DOI", "citation"=>"Ruiyuan Li, Rubin Wang, et al.. 2021. Distributed Spatio-Temporal 𝑘 Nearest\r\nNeighbors Join. In 29th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’21), November 2–5, 2021, Beijing, China.\r\nACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3474717.3484209", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2021-09-14T14:46:53Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1007/978-3-030-86383-8_49", "uri"=>"10.1007/978-3-030-86383-8_49", "uri_type"=>"DOI", "citation"=>"Chen J., Zhang S., Chen X., Jiang Q., Huang H., Gu C. (2021) Learning Traffic as Videos: A Spatio-Temporal VAE Approach for Traffic Data Imputation. In: Farkaš I., Masulli P., Otte S., Wermter S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science, vol 12895. Springer, Cham. https://doi.org/10.1007/978-3-030-86383-8_49", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2021-09-14T14:39:38Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://my.ece.msstate.edu/faculty/skhan/pub/K_K_2021_IC2E.pdf", "uri"=>"https://my.ece.msstate.edu/faculty/skhan/pub/K_K_2021_IC2E.pdf", "uri_type"=>"URL", "citation"=>"Kang, Peng, Palden Lama, and Samee U. Khan. \"SLO-aware Virtual Rebalancing for Edge Stream Processing.\"", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2021-08-16T15:25:03Z
RelatedMaterial create: {"material_type"=>"", "availability"=>nil, "link"=>"https://doi.org/10.1287/trsc.2021.1068", "uri"=>"10.1287/trsc.2021.1068", "uri_type"=>"DOI", "citation"=>"Keji Wei, Vikrant Vaze, Alexandre Jacquillat. (2021). Transit Planning Optimization Under Ride-Hailing Competition and Traffic Congestion. Transportation Science 0 (0) https://doi.org/10.1287/trsc.2021.1068", "dataset_id"=>13, "selected_type"=>"", "datacite_list"=>"IsCitedBy"} 2021-07-20T15:48:14Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1145/3449726.3459433", "uri"=>"10.1145/3449726.3459433", "uri_type"=>"DOI", "citation"=>"Jiaze Sun, Nan Han, Jianbin Huang, and Jiahui Deng. 2021. Landmark-based multi-objective route planning for large-scale road net. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '21). Association for Computing Machinery, New York, NY, USA, 193–194. DOI:https://doi.org/10.1145/3449726.3459433", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2021-07-13T00:35:48Z
RelatedMaterial update: {"material_type"=>["", "Article"], "selected_type"=>["", "Article"]} 2021-07-02T18:03:49Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://arxiv.org/abs/2106.14827", "uri"=>"abs/2106.14827", "uri_type"=>"arXiv", "citation"=>"Zardini, Gioele, Nicolas Lanzetti, M. Pavone and Emilio Frazzoli. “Analysis and Control of Autonomous Mobility-on-Demand Systems: A Review.” ArXiv abs/2106.14827 (2021): n. pag.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2021-07-02T18:02:41Z
RelatedMaterial create: {"material_type"=>"", "availability"=>nil, "link"=>"https://doi.org/10.1109/TFUZZ.2021.3076265", "uri"=>"10.1109/TFUZZ.2021.3076265", "uri_type"=>"DOI", "citation"=>"A. Kiersztyn, P. Karczmarek, K. Kiersztyn and W. Pedrycz, \"Detection and Classification of Anomalies in Large Data Sets on the Basis of Information Granules,\" in IEEE Transactions on Fuzzy Systems, doi: 10.1109/TFUZZ.2021.3076265.", "dataset_id"=>13, "selected_type"=>"", "datacite_list"=>"IsCitedBy"} 2021-05-04T16:58:40Z
RelatedMaterial create: {"material_type"=>"Thesis", "availability"=>nil, "link"=>"https://research.tue.nl/en/studentTheses/continuous-dynamic-time-warping-for-clustering-curves", "uri"=>"https://research.tue.nl/en/studentTheses/continuous-dynamic-time-warping-for-clustering-curves", "uri_type"=>"URL", "citation"=>"Klaren, K. R. Continuous Dynamic Time Warping for Clustering Curves. 14 Aug 2020. Student thesis: Master. ", "dataset_id"=>13, "selected_type"=>"Thesis", "datacite_list"=>"IsCitedBy"} 2021-04-03T20:49:13Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://cs.haifa.ac.il/~dkeren/ICDE2021_Reducing_Communication_Bandwidth_in_Geometric_Monitoring.pdf", "uri"=>"https://cs.haifa.ac.il/~dkeren/ICDE2021_Reducing_Communication_Bandwidth_in_Geometric_Monitoring.pdf", "uri_type"=>"URL", "citation"=>"Y. Alfassi, M. Gabel, G. Yehuda, and D. Keren. A Distance-Based Scheme for Reducing Bandwidth in Distributed Geometric Monitoring. 37th IEEE International Conference on Data Engineering (ICDE), 2021", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2021-02-26T01:12:16Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/TITS.2020.3029141", "uri"=>"10.1109/TITS.2020.3029141", "uri_type"=>"DOI", "citation"=>"L. Hu and J. Dong, \"An Artificial-Neural-Network-Based Model for Real-Time Dispatching of Electric Autonomous Taxis,\" in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2020.3029141.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2020-11-09T17:21:00Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/FUZZ48607.2020.9177668", "uri"=>"10.1109/FUZZ48607.2020.9177668", "uri_type"=>"DOI", "citation"=>"A. Kiersztyn, P. Karczmarek, K. Kiersztyn and W. Pedrycz, \"The Concept of Detecting and Classifying Anomalies in Large Data Sets on a Basis of Information Granules,\" 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, United Kingdom, 2020, pp. 1-7, doi: 10.1109/FUZZ48607.2020.9177668.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2020-09-02T16:45:26Z
RelatedMaterial update: {"material_type"=>["", "Article"], "selected_type"=>["", "Article"]} 2020-09-02T16:45:26Z
RelatedMaterial create: {"material_type"=>"", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.cor.2020.105065", "uri"=>"10.1016/j.cor.2020.105065", "uri_type"=>"DOI", "citation"=>"C.S. Sartori, L.S. Buriol, A Study on the Pickup and Delivery Problem with TimeWindows: Matheuristics and New Instances, Computers and Operations Research (2020), doi: https://doi.org/10.1016/j.cor.2020.105065", "dataset_id"=>13, "selected_type"=>"", "datacite_list"=>"IsCitedBy"} 2020-08-04T21:44:36Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.jtte.2019.07.002", "uri"=>"10.1016/j.jtte.2019.07.002", "uri_type"=>"DOI", "citation"=>"Luo, H et al., A multi-task deep learning model for short-term taxi demand forecasting consideringspatiotemporal dependences, Journal of Traffic and Transportation Engineering (English Edition), https://doi.org/10.1016/j.jtte.2019.07.002", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2020-04-08T15:39:43Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.trc.2019.12.020", "uri"=>"10.1016/j.trc.2019.12.020", "uri_type"=>"DOI", "citation"=>"Leyi Duan, Yuguang Wei, Jinchuan Zhang, Yang Xia, entralized and decentralized autonomous dispatching strategy for dynamic autonomous taxi operation in hybrid request mode. Transportation Research Part C: Emerging Technologies, Volume 111, 2020, pg 397-420, doi: https://doi.org/10.1016/j.trc.2019.12.020", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2020-01-13T16:42:04Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1109/ITSC.2019.8916904", "uri"=>"10.1109/ITSC.2019.8916904", "uri_type"=>"DOI", "citation"=>"A. Wallar, W. Schwarting, J. Alonso-Mora and D. Rus, \"Optimizing Multi-class Fleet Compositions for Shared Mobility-as-a-Service,\" 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019, pp. 2998-3005.\r\ndoi: 10.1109/ITSC.2019.8916904", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2019-12-03T20:25:29Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.trc.2019.09.020", "uri"=>"10.1016/j.trc.2019.09.020", "uri_type"=>"DOI", "citation"=>"Carmody, Daniel R., Sowers, Richard B. Tradeoffs between safety and time: A routing view. Transportation Research Part C: Emerging Technologies. Volume 108, November 2019, Pages 357-377, https://doi.org/10.1016/j.trc.2019.09.020", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2019-10-23T18:45:02Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384588", "uri"=>"http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384588", "uri_type"=>"URL", "citation"=>"Bränström, A., & Söderberg, J. (2019). A package deal for the future: Vehicle-to-Grid combined with Mobility as a Service (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384588", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2019-06-18T15:08:18Z
RelatedMaterial update: {"citation"=>["R.X. Zhong, X.X. Xie and J.C. Luo et al., Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems,Transportation Research Part B, https://doi.org/10.1016/j.trb.2019.05.005\r\n", "R.X. Zhong, X.X. Xie and J.C. Luo et al., Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems, Transportation Research Part B, https://doi.org/10.1016/j.trb.2019.05.005\r\n"]} 2019-05-21T15:10:42Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.trb.2019.05.005", "uri"=>"10.1016/j.trb.2019.05.005", "uri_type"=>"DOI", "citation"=>"R.X. Zhong, X.X. Xie and J.C. Luo et al., Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems,Transportation Research Part B, https://doi.org/10.1016/j.trb.2019.05.005\r\n", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2019-05-21T15:10:10Z
RelatedMaterial create: {"material_type"=>"Conference paper", "availability"=>nil, "link"=>"https://doi.org/10.1145/3308558.3313465", "uri"=>"10.1145/3308558.3313465", "uri_type"=>"DOI", "citation"=>"Chak Fai Yuen, Abhishek Pratap Singh, Sagar Goyal, Sayan Ranu, and Amitabha Bagchi. 2019. Beyond Shortest Paths: Route Recommendations for Ride-sharing. In The World Wide Web Conference (WWW '19), Ling Liu and Ryen White (Eds.). ACM, New York, NY, USA, 2258-2269. DOI: https://doi.org/10.1145/3308558.3313465", "dataset_id"=>13, "selected_type"=>"Other", "datacite_list"=>"IsCitedBy"} 2019-05-20T14:55:46Z
RelatedMaterial create: {"material_type"=>"Conference paper", "availability"=>nil, "link"=>"http://wallar.me/publications/wallar-icra-fleet-2019.pdf", "uri"=>"http://wallar.me/publications/wallar-icra-fleet-2019.pdf", "uri_type"=>"URL", "citation"=>"A. Wallar, J. Alonso-Mora, and D. Rus (2019): Optimizing Vehicle Distributions and Fleet Sizes for Mobility-on-Demand, 2019 IEEE International Conference on Robotics and Automation (ICRA)", "dataset_id"=>13, "selected_type"=>"Other", "datacite_list"=>"IsCitedBy"} 2019-02-11T16:17:08Z
RelatedMaterial update: {"material_type"=>["Presentation", "Article"], "selected_type"=>["Presentation", "Article"]} 2018-10-08T16:32:57Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://alonsomora.com/docs/18-wallar-iros.pdf", "uri"=>"http://alonsomora.com/docs/18-wallar-iros.pdf", "uri_type"=>"URL", "citation"=>"A. Wallar, M. van der Zee, J. Alonso-Mora and D. Rus, \"Vehicle Rebalancing for Mobility-on-Demand Systems with Ride-Sharing\", in Proc. of the IEEE/RSJ Conf. on Robotics and Intelligent Systems (IROS), October 2018", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2018-09-05T16:58:53Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.seps.2018.08.001", "uri"=>"10.1016/j.seps.2018.08.001", "uri_type"=>"DOI", "citation"=>"Andrew S. Manikas, James R. Kroes, Thomas F. Gattiker. Misalignment between societal well-being and business profit maximization: The case of New York taxis drivers' incentive system, Socio-Economic Planning Sciences, 2018. https://doi.org/10.1016/j.seps.2018.08.001", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2018-08-13T18:11:16Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1145/3219819.3220055", "uri"=>"10.1145/3219819.3220055", "uri_type"=>"DOI", "citation"=>"Nandani Garg and Sayan Ranu. 2018. Route Recommendations for Idle Taxi Drivers: Find Me the Shortest Route to a Customer!. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '18). ACM, New York, NY, USA, 1425-1434. DOI: https://doi.org/10.1145/3219819.3220055", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsCitedBy"} 2018-07-25T03:32:09Z
Dataset update: {"subject"=>[nil, "Technology and Engineering"]} 2018-02-09T16:00:43Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.trc.2017.12.017", "uri"=>"10.1016/j.trc.2017.12.017", "uri_type"=>"DOI", "citation"=>"Liang Hu, Jing Dong, Zhenhong Lin, Jie Yang, Analyzing battery electric vehicle feasibility from taxi travel patterns: The case study of New York City, USA, Transportation Research Part C: Emerging Technologies, Volume 87, February 2018, Pages 91-104, ISSN 0968-090X, https://doi.org/10.1016/j.trc.2017.12.017.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2018-01-08T16:36:40Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://dx.doi.org/10.1145/3070607.3075961", "uri"=>"10.1145/3070607.3075961", "uri_type"=>"DOI", "citation"=>"\r\nExport Formats\r\nBibTeX | EndNote | ACM Ref\r\n\r\nJacek Sroka, Artur Leśniewski, Mirosław Kowaluk, Krzysztof Stencel, and Jerzy Tyszkiewicz. 2017. Towards minimal algorithms for big data analytics with spreadsheets. In Proceedings of the 4th Algorithms and Systems on MapReduce and Beyond (BeyondMR'17). ACM, New York, NY, USA, Article 1, 4 pages. DOI: https://doi.org/10.1145/3070607.3075961", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2017-06-15T14:55:26Z
RelatedMaterial update: {"datacite_list"=>["", "IsSupplementTo"]} 2017-06-12T18:50:17Z
RelatedMaterial update: {"uri"=>["", "10.13012/B2IDB-4900670_V1"], "datacite_list"=>["", "IsSupplementTo"]} 2017-06-12T18:50:17Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"https://doi.org/10.1016/j.dss.2017.05.008", "uri"=>"10.1016/j.dss.2017.05.008", "uri_type"=>"DOI", "citation"=>" B. Barann, et al., An open-data approach for quantifying the potential of taxi ridesharing, Decision Support Systems\r\n(2017), http://dx.doi.org/10.1016/j.dss.2017.05.008", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2017-06-06T21:14:18Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://dx.doi.org/10.1007/s00180-016-0686-y", "uri"=>"10.1007/s00180-016-0686-y", "uri_type"=>"DOI", "citation"=>"Grzegorczyk, M. & Shafiee Kamalabad, M. Comput Stat (2017) 32: 1. doi:10.1007/s00180-016-0686-y", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>""} 2017-05-11T21:34:50Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://dx.doi.org/10.1109/GlobalSIP.2016.7906046", "uri"=>"10.1109/GlobalSIP.2016.7906046", "uri_type"=>"DOI", "citation"=>"Deri, Joya A. & Moura, Jose M. F. (2016, December). \"New York city taxi analysis with graph signal processing.\" Paper presented at 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA. doi:10.1109/GlobalSIP.2016.7906046.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2017-05-11T21:25:22Z
Dataset update: {"version_comment"=>[nil, ""]} 2017-05-11T21:25:22Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://doi.org/10.1016/j.trc.2017.03.002", "uri"=>"10.1016/j.trc.2017.03.002", "uri_type"=>"DOI", "citation"=>"Donovan, B., & Work, D. \"Empirically quantifying city-scale transportation system resilience to extreme events.\" Transportation Research Part C: Emerging Technologies, Volume 79, June 2017, Pages 333-346, doi:10.1016/j.trc.2017.03.002.", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2017-04-19T13:56:52Z
RelatedMaterial create: {"material_type"=>"Presentation", "availability"=>nil, "link"=>"http://www2.cs.uic.edu/~urbcomp2013/urbcomp2016/papers/Reducing.pdf", "uri"=>"", "uri_type"=>"", "citation"=>"Zhu, C. & Prabhakar, B. (2016, August). \"Reducing Inefficiencies in Taxi Systems.\" Paper presented at UrbComp’16, August 14, 2016, San Francisco, USA. ", "dataset_id"=>13, "selected_type"=>"Presentation", "datacite_list"=>""} 2017-01-03T17:10:04Z
Dataset update: {"description"=>["This dataset contains records of four years of taxi operations in New York City and includes 697,622,444 trips. Each trip records the pickup and drop-off dates, times, and coordinates, as well as the metered distance reported by the taximeter. The trip data also includes fields such as the taxi medallion number, fare amount, and tip amount. The dataset was obtained through a Freedom of Information Law request from the New York City Taxi and Limousine Commission.", "This dataset contains records of four years of taxi operations in New York City and includes 697,622,444 trips. Each trip records the pickup and drop-off dates, times, and coordinates, as well as the metered distance reported by the taximeter. The trip data also includes fields such as the taxi medallion number, fare amount, and tip amount. The dataset was obtained through a Freedom of Information Law request from the New York City Taxi and Limousine Commission.\r\n\r\nThe files in this dataset are optimized for use with the ‘decompress.py’ script included in this dataset. This file has additional documentation and contact information that may be of help if you run into trouble accessing the content of the zip files."]} 2016-12-12T21:39:26Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://dx.doi.org/10.1371/journal.pone.0167267", "uri"=>"10.1371/journal.pone.0167267", "uri_type"=>"DOI", "citation"=>"Guan X, Chen C, Work D (2016) Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data. PLoS ONE 11(12): e0167267. doi:10.1371/journal.pone.0167267", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2016-12-06T14:31:52Z
RelatedMaterial update: {"citation"=>["Grzegorczyk, M. & Shafiee Kamalabad, M. Comput Stat (2016). doi:10.1007/s00180-016-0686-y", "Grzegorczyk, M. & Shafiee Kamalabad. (2016). \"Comparative evaluation of various frequentist and Bayesian non-homogeneous Poisson counting models.\" Computational Statistics. doi:10.1007/s00180-016-0686-y"]} 2016-10-11T15:07:18Z
RelatedMaterial create: {"material_type"=>"Article", "availability"=>nil, "link"=>"http://dx.doi.org/10.1007/s00180-016-0686-y", "uri"=>"10.1007/s00180-016-0686-y", "uri_type"=>"DOI", "citation"=>"Grzegorczyk, M. & Shafiee Kamalabad, M. Comput Stat (2016). doi:10.1007/s00180-016-0686-y", "dataset_id"=>13, "selected_type"=>"Article", "datacite_list"=>"IsSupplementTo"} 2016-10-11T15:04:23Z
RelatedMaterial create: {"material_type"=>"Thesis", "availability"=>nil, "link"=>"http://purl.stanford.edu/bz752gf4249", "uri"=>"http://purl.stanford.edu/bz752gf4249", "uri_type"=>"PURL", "citation"=>"Zhu, Chenguang. (2015). Analysis and modeling of large-scale systems: taxis and social polling (Doctoral dissertation). Stanford University, Stanford, CA.", "dataset_id"=>13, "selected_type"=>"Thesis", "datacite_list"=>"IsSupplementTo,IsCitedBy"} 2016-07-07T21:54:03Z
RelatedMaterial create: {"material_type"=>"Dataset", "availability"=>nil, "link"=>"https://doi.org/10.13012/B2IDB-4900670_V1", "uri"=>"", "uri_type"=>"", "citation"=>"Donovan, Brian; Mori, Alec; Agrawal, Nimit; Meng, Yalan; Lee, Jong; Work, Daniel (2016): New York City Hourly Traffic Estimates (2010-2013). University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4900670_V1", "dataset_id"=>13, "selected_type"=>"Dataset", "datacite_list"=>""} 2016-06-29T20:06:19Z
Dataset update: {"hold_state"=>["files temporarily suppressed", nil]} 2016-05-20T13:47:28Z
Dataset update: {"hold_state"=>["none", "files temporarily suppressed"]} 2016-05-19T23:20:57Z