Dataset Description
|
The salt controversy is the public health debate about whether a population-level salt reduction is beneficial. This dataset covers 82 publications--14 systematic review reports (SRRs) and 68 primary study reports (PSRs)--addressing the effect of sodium intake on cerebrocardiovascular disease or mortality. These present a snapshot of the status of the salt controversy as of September 2014 according to previous work by epidemiologists: The reports and their opinion classification (for, against, and inconclusive) were from Trinquart et al. (2016) (Trinquart, L., Johns, D. M., & Galea, S. (2016). Why do we think we know what we know? A metaknowledge analysis of the salt controversy. International Journal of Epidemiology, 45(1), 251–260. https://doi.org/10.1093/ije/dyv184), which collected 68 PSRs, 14 SRRs, 11 clinical guideline reports, and 176 comments, letters, or narrative reviews. Note that our dataset covers only the 68 PSRs and 14 SRRs from Trinquart et al. 2016, not the other types of publications, and it adds additional information noted below.
This dataset can be used to construct the inclusion network and the co-author network of the 14 SRRs and 68 PSRs. A PSR is "included" in an SRR if it is considered in the SRR's evidence synthesis. Each included PSR is cited in the SRR, but not all references cited in an SRR are included in the evidence synthesis or PSRs. Based on which PSRs are included in which SRRs, we can construct the inclusion network. The inclusion network is a bipartite network with two types of nodes: one type represents SRRs, and the other represents PSRs. In an inclusion network, if an SRR includes a PSR, there is a directed edge from the SRR to the PSR. The attribute file (report_list.csv) includes attributes of the 82 reports, and the edge list file (inclusion_net_edges.csv) contains the edge list of the inclusion network. Notably, 11 PSRs have never been included in any SRR in the dataset. They are unused PSRs. If visualized with the inclusion network, they will appear as isolated nodes.
We used a custom-made workflow (Fu, Y. (2022). Scopus author info tool (1.0.1) [Python]. https://github.com/infoqualitylab/Scopus_author_info_collection ) that uses the Scopus API and manual work to extract and disambiguate authorship information for the 82 reports. The author information file (salt_cont_author.csv) is the product of this workflow and can be used to compute the co-author network of the 82 reports.
We also provide several other files in this dataset. We collected inclusion criteria (the criteria that make a PSR eligible to be included in an SRR) and recorded them in the file systematic_review_inclusion_criteria.csv. We provide a file (potential_inclusion_link.csv) recording whether a given PSR had been published as of the search date of a given SRR, which makes the PSR potentially eligible for inclusion in the SRR. We also provide a bibliography of the 82 publications (supplementary_reference_list.pdf). Lastly, we discovered minor discrepancies between the inclusion relationships identified by Trinquart et al. (2016) and by us. Therefore, we prepared an additional edge list (inclusion_net_edges_trinquart.csv) to preserve the inclusion relationships identified by Trinquart et al. (2016).
|