Illinois Data Bank Dataset Search Results
Results
published:
2019-09-25
Wong, Tony; Hughes, A; Tokuda, K; Indebetouw, R; Onishi, T; Bandurski, J. B.; Chen, C. H. R.; Fukui, Y; Glover, S. C. O.; Klessen, R. S.; Pineda, J. L.; Roman-Duval, J.; Sewilo, M.; Wojciechowski, E.; Zahorecz, S.
(2019)
<sup>12</sup>CO and <sup>13</sup>CO maps for six molecular clouds in the Large Magellanic Cloud, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). See the associated article in the Astrophysical Journal, and README files within each ZIP archive. Please cite the article if you use these data.
keywords:
Radio astronomy
published:
2019-12-12
Kamuda, Mark; Huff, Kathryn
(2019)
This dataset contains gamma-ray spectra templates for a source interdiction and uranium enrichment measurement task. This dataset also contains Keras machine learning models trained using datasets created using these templates.
keywords:
gamma-ray spectroscopy; neural networks; machine learning; isotope identification; uranium enrichment; sodium iodide; NaI(Tl)
published:
2017-08-11
Schiffer, Peter; Le, Brian L.
(2017)
Enclosed in this dataset are transport data of kagome connected artificial spin ice networks composed of permalloy nanowires. The data herein are reproductions of the data seen in Appendix B of the dissertation titled "Magnetotransport of Connected Artificial Spin Ice". Field sweeps with the magnetic field applied in-plane were performed in 5 degree increments for armchair orientation kagome artificial spin ice and zigzag orientation kagome artificial spin ice.
keywords:
Magnetotransport; artificial spin ice; nanowires
published:
2024-12-17
Nesbitt, Stephen; Niescier, Robert
(2024)
This repository contains precipitation spectra from a Parsivel-2 disdrometer deployed at Lancaster High School, Lancaster, NY, as well as a MRR-2 radar deployed at the same site. The site was located at 42.9299° N, 78.6708° W. Parsivel data were converted to netCDF using the pyDSD python package. MRR-2 spectra are raw from the manufacturer's software. The Parsivel and MRR-2 data include periods collected during November 2022 as described in the paper.
keywords:
snowfall; disdrometer; spectra; micro rain radar; Doppler
published:
2024-11-15
BL30K is a synthetic dataset rendered using Blender with ShapeNet's data. We break the dataset into six segments, each with approximately 5K videos. The videos are organized in a similar format as DAVIS and YouTubeVOS, so dataloaders for those datasets can be used directly. Each video is 160 frames long, and each frame has a resolution of 768*512. There are 3-5 objects per video, and each object has a random smooth trajectory -- we tried to optimize the trajectories in a greedy fashion to minimize object intersection (not guaranteed), with occlusions still possible (happen a lot in reality). See [Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion (MiVOS), CVPR 2022] for details.
published:
2020-11-18
This is the dataset that accompanies the paper titled "A Dual-Frequency Radar Retrieval of Snowfall Properties Using a Neural Network", submitted for peer review in August 2020. Please see the github for the most up-to-date data after the revision process: https://github.com/dopplerchase/Chase_et_al_2021_NN
Authors: Randy J. Chase, Stephen W. Nesbitt and Greg M. McFarquhar Corresponding author: Randy J. Chase (randyjc2@illinois.edu)
Here we have the data used in the manuscript. Please email me if you have specific questions about units etc.
1) DDA/GMM database of scattering properties: base_df_DDA.csv
This is the combined dataset from the following papers: Leinonen & Moisseev, 2015; Leinonen & Szyrmer, 2015; Lu et al., 2016; Kuo et al., 2016; Eriksson et al., 2018. The column names are D: Maximum dimension in meters, M: particle mass in grams kg, sigma_ku: backscatter cross-section at ku in m^2, sigma_ka: backscatter cross-section at ka in m^2, sigma_w: backscatter cross-section at w in m^2. The first column is just an index column.
2) Synthetic Data used to train and test the neural network: Unrimed_simulation_wholespecturm_train_V2.nc, Unrimed_simulation_wholespecturm_test_V2.nc
This was the result of combining the PSDs and DDA/GMM particles randomly to build the training and test dataset.
3) Notebook for training the network using the synthetic database and Google Colab (tensorflow): Train_Neural_Network_Chase2020.ipynb
This is the notebook used to train the neural network.
4)Trained tensorflow neural network: NN_6by8.h5 This is the hdf5 tensorflow model that resulted from the training. You will need this to run the retrieval.
5) Scalers needed to apply the neural network: scaler_X_V2.pkl, scaler_y_V2.pkl These are the sklearn scalers used in training the neural network. You will need these to scale your data if you wish to run the retrieval.
6) <b>New in this version</b> - Example notebook of how to run the trained neural network on Ku- Ka- band observations. We showed this with the 3rd case in the paper: Run_Chase2021_NN.ipynb
7) <b>New in this version</b> - APR data used to show how to run the neural network retrieval: Chase_2021_NN_APR03Dec2015.nc
The data for the analysis on the observations are not provided here because of the size of the radar data. Please see the GHRC website (<a href="https://ghrc.nsstc.nasa.gov/home/">https://ghrc.nsstc.nasa.gov/home/</a>) if you wish to download the radar and in-situ data or contact me. We can coordinate transferring the exact datafiles used.
The GPM-DPR data are avail. here: <a href="http://dx.doi.org/10.5067/GPM/DPR/GPM/2A/05">http://dx.doi.org/10.5067/GPM/DPR/GPM/2A/05</a>
published:
2024-04-15
Lyu, Zhiheng; Lehan, Yao; Zhisheng, Wang; Chang, Qian; Zuochen, Wang; Jiahui, Li; Yufeng, Wang; Qian, Chen
(2024)
The dataset contains trajectories of Pt nanoparticles in 1.98 mM NaBH4 and NaCl, tracked under liquid-phase TEM. The coordinates (x, y) of nanoparticles are provided, together with the conversion factor that translates pixel size to actual distance. In the file, ∆t denotes the time interval and NaN indicates the absence of a value when the nanoparticle has not emerged or been tracked. The labeling of nanoparticles in the paper is also noted in the second row of the file.
keywords:
nanomotor; liquid-phase TEM
published:
2024-05-13
Gopalakrishnappa, Chandana; Li, Zeqian; Kuehn, Seppe
(2024)
Supplemental data for the paper titled 'Environmental modulators of algae-bacteria interactions at scale'. Each of the excel workbooks corresponding to datasets 1, 2, and 3 contain a README sheet explaining the reported data. Dataset 4 comprising microscopy data contains a README text file describing the image files.
keywords:
Algae-bacteria interactions; high-throughput; microfluidic-droplet platform
published:
2024-05-30
Lyu, Fangzheng; Zhou, Lixuanwu; Park, Jinwoo; Baig, Furqan; Wang, Shaowen
(2024)
This dataset contains all the datasets used in the study conducted for the research publication titled "Mapping dynamic human sentiments of heat exposure with location-based social media data". This paper develops a cyberGIS framework to analyze and visualize human sentiments of heat exposure dynamically based on near real-time location-based social media (LBSM) data. Large volumes and low-cost LBSM data, together with a content analysis algorithm based on natural language processing are used effectively to generate heat exposure maps from human sentiments on social media.
## What’s inside - A quick explanation of the components of the zip file
* US folder includes the shapefile corresponding to the United State with County as spatial unit
* Census_tract folder includes the shapefile corresponding to the Cook County with census tract as spatial unit
* data/data.txt includes instruction to retrieve the sample data either from Keeling or figshare
* geo/data20000.txt is the heat dictionary created in this paper, please refer to the corresponding publication to see the data creation process
Jupyter notebook and code attached to this publication can be found at: https://github.com/cybergis/real_time_heat_exposure_with_LBSMD
keywords:
CyberGIS; Heat Exposure; Location-based Social Media Data; Urban Heat
published:
2024-05-29
Raghavan, Arjun; Romanelli, Marisa; Madhavan, Vidya
(2024)
Data from manuscript Atomic-Scale Visualization of a Cascade of Magnetic Orders in the Layered Antiferromagnet GdTe3, to be published in npj Quantum Materials. Powerpoint file has details on how the data can be opened and how the data are labeled.
keywords:
Scanning Tunneling Microscopy; Physics; GdTe3; Rare-Earth Tritellurides
published:
2024-05-07
Nahid, Shahriar Muhammad; Nam, SungWoo; van der Zande, Arend
(2024)
Optical, AFM, and PFM image of α-In2Se3; Short-circuit current and open circuit voltage maps, I-V curve for different intensities; Dependence of the short-circuit current density, open-circuit voltage, depolarization field, and efficiency on intensity and thickness; Benchmarking the performance.
published:
2021-04-18
Lyu, Fangzheng; Kang, Jeon-Young; Wang, Shaohua; Han, Su; Li, Zhiyu; Wang, Shaowen; Padmanabhan, Anand
(2021)
This dataset contains all the code, notebooks, datasets used in the study conducted for the research publication titled "Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19 Data". Specifically, this package include the artifacts used to conduct spatial-temporal analysis with space time kernel density estimation (STKDE) using COVID-19 data, which should help readers to reproduce some of the analysis and learn about the methods that were conducted in the associated book chapter.
## What’s inside - A quick explanation of the components of the zip file
* Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19.ipynb is a jupyter notebook for this project. It contains codes for preprocessing, space time kernel density estimation, postprocessing, and visualization.
* data is a folder containing all data needed for the notebook
* data/county.txt: US counties information and fip code from Natural Resources Conservation Service.
* data/us-counties.txt: County-level COVID-19 data collected from New York Times COVID-19 github repository on August 9th, 2020.
* data/covid_death.txt: COVID-19 death information derived after preprocessing step, preparing the input data for STKDE. Each record is if the following format (fips, spatial_x, spatial_y, date, number of death ).
* data/stkdefinal.txt: result obtained by conducting STKDE.
* wolfram_mathmatica is a folder for 3D visulization code.
* wolfram_mathmatica/Visualization.nb: code for visulization of STKDE result via weolfram mathmatica.
* img is a folder for figures.
* img/above.png: result of 3-D visulization result, above view.
* img/side.png: result of 3-D visulization, side view.
keywords:
CyberGIS; COVID-19; Space-time kernel density estimation; Spatiotemporal patterns
published:
2022-04-11
Liu, Shanshan; Kontou, Eleftheria
(2022)
This data set contains all the map data used for "Quantifying transportation energy vulnerability and its spatial patterns in the United States". The multiple dimensions (i.e., exposure, sensitivity, adaptive capacity) of transportation energy vulnerability (TEV) at the census tract level in the United States, the changes in TEV with electric vehicles adoption, and the detailed data for Chicago, Los Angeles, and New York are in the dataset.
keywords:
Transport energy; Vulnerability; Fuel costs; Electric vehicles
published:
2022-06-15
Wong, Tony; Oudshoorn, Luuk; Sofovich, Eliyahu; Green, Alex; Shah, Charmi; Indebetouw, Remy; Meixner, Margaret; Hacar, Alvaro; Nayak, Omnarayani; Tokuda, Kazuki; Bolatto, Alberto D.; Chevance, Melanie; De Marchi, Guido; Fukui, Yasuo; Hirschauer, Alec S.; Jameson, K. E.; Kalari, Venu; Lebouteiller, Vianney; Looney, Leslie W.; Madden, Suzanne C.; Onishi, Toshikazu; Roman-Duval, Julia; Rubio, Monica; Tielens, A. G. G. M.
(2022)
12CO and 13CO emission maps of the 30 Doradus molecular cloud in the Large Magellanic Cloud, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 7. See the associated article in the Astrophysical Journal, and README file, for details. Please cite the article if you use these data.
keywords:
Radio astronomy
published:
2024-04-19
Zhang, Yue; Zhao, Helin; Huang, Siyuan; Hossain, Mohhamad Abir; van der Zande, Arend
(2024)
Read me file for the data repository
*******************************************************************************
This repository has raw data for the publication "Enhancing Carrier Mobility In Monolayer MoS2 Transistors With Process Induced Strain". We arrange the data following the figure in which it first appeared. For all electrical transfer measurement, we provide the up-sweep and down-sweep data, with voltage units in V and conductance unit in S. All Raman modes have unit of cm^-1.
*******************************************************************************
How to use this dataset
All data in this dataset is stored in binary Numpy array format as .npy file.
To read a .npy file: use the Numpy module of the python language, and use np.load() command.
Example: suppose the filename is example_data.npy. To load it into a python program, open a Jupyter notebook, or in the python program, run:
import numpy as np
data = np.load("example_data.npy")
Then the example file is stored in the data object.
*******************************************************************************
published:
2024-01-30
This data set includes the cochlear implant (CI) electrodograms recorded in 2 different acoustic conditions using acoustic head KEMAR. It is a part of a study intended to explore the effect of interaural asymmetry on interaural coherence after CI processing.
keywords:
cochlear implant; electrodogram; KEMAR; interaural coherence
published:
2023-12-20
Xie, Yuxuan Richard; Castro, Daniel C.; Rubakhin, Stanislav S.; Trinklein, Timothy J.; Sweedler, Jonathan V.; Fan, Lam
(2023)
Important Note: the raw transient files need to be downloaded through this separate link: https://uofi.box.com/s/oagdxhea1wi8tvfij4robj0z0w8wq7j4. Once downloaded, place the file within the within the .d folder in the unzipped 20210930_ShortTransient_S3_5 folder to perform reconstruction step.
The minimal datasets to run the computational pipeline MEISTER introduced in the manuscript titled "Integrative Multiscale Biochemical Mapping of the Brain via Deep-Learning-Enhanced High-Throughput Mass Spectrometry". The key steps of our computational pipeline include (1) tissue mass spectrometry imaging (MSI) reconstruction; (2) multimodal image registration and 3D reconstruction; (3) regional analysis; and (4) single-cell and tissue data integration. Detailed protocols to reproduce our results in the manuscript are provided with an example data set shared for learning the protocols. Our computational processing codes are implemented mostly in Python as well as MATLAB (for image registration).
keywords:
deep learning;mass spectrometry;single cells
published:
2023-06-29
Pandit, Akshay; Karakoc, Deniz Berfin; Konar, Megan
(2023)
This database provides estimates of agricultural and food commodity flows [in both tons and $US] between the US and China for the year 2017. Pairwise information is provided between US states and Chinese provinces, and US counties and Chinese provinces for 7 Standardized Classification of Transported Goods (SCTG) commodity categories. Additionally, crosswalks are provided to match Harmonized System (HS) codes and China's Multi-Regional Input Output (MRIO) commodity sectors to their corresponding SCTG commodity codes. The included SCTG commodities are:
- SCTG 01: Iive animals and fish
- SCTG 02: cereal grains
- SCTG 03: agricultural products (except for animal feed, cereal grains, and forage products)
- SCTG 04: animal feed, eggs, honey, and other products of animal origin
- SCTG 05: meat, poultry, fish, seafood, and their preparations
- SCTG 06: milled grain products and preparations, and bakery products
- SCTG 07: other prepared foodstuffs, fats and oils
For additional information, please see the related paper by Pandit et al. (2022) in Environmental Research Letters. ADD DOI WHEN RECEIVED
keywords:
Food flows; High-resolution; County-scale; Bilateral; United States; China
published:
2024-03-28
Zhang, Yue; Zhao, Helin; Huang, Siyuan; Hossain, Mohhamad Abir; van der Zande, Arend
(2024)
Read me file for the data repository
*******************************************************************************
This repository has raw data for the publication "Enhancing Carrier Mobility In Monolayer MoS2 Transistors With Process Induced Strain". We arrange the data following the figure in which it first appeared. For all electrical transfer measurement, we provide the up-sweep and down-sweep data, with voltage units in V and conductance unit in S. All Raman modes have unit of cm^-1.
*******************************************************************************
How to use this dataset
All data in this dataset is stored in binary Numpy array format as .npy file.
To read a .npy file: use the Numpy module of the python language, and use np.load() command.
Example: suppose the filename is example_data.npy. To load it into a python program, open a Jupyter notebook, or in the python program, run:
import numpy as np
data = np.load("example_data.npy")
Then the example file is stored in the data object.
*******************************************************************************
published:
2022-02-14
Yao, Yu; Curtis, Jeffrey; Ching, Joseph; Zheng, Zhonghua; Riemer, Nicole
(2022)
This dataset contains simulation results from numerical model PartMC-MOSAIC used in the article "Quantifying the effects of mixing state on aerosol optical properties". This article is submitted to the journal Atmospheric Physics and Chemistry. There are total 100 scenario directories in this dataset, denoted from 00-99. Each scenario contains 25 NetCDF files hourly output from PartMC-MOSAIC simulations containing the simulated gas and particle information.
The data was produced using version 2.5.0 of PartMC-MOSAIC. Instructions to compile and run PartMC-MOSAIC are available at https://github.com/compdyn/partmc. The chemistry code MOSAIC is available by request from Rahul.Zaveri@pnl.gov. For more details of reproducing the cases, please contact nriemer@illinois.edu and yuyao3@illinois.edu.
keywords:
Aerosol mixing state; Aerosol optical properties; Mie calculation; Black Carbon
published:
2024-01-04
Kim, Hyunchul; Zhao, Helin; van der Zande, Arend
(2024)
This data set includes all of data related to stretchable TFTs based on 2D heterostructures including optical images of TFTs, Raman and Photoluminescence characteristics data, Transport measurement data, and AFM topography data.
Abstract
Two-dimensional (2D) materials are outstanding candidates for stretchable electronics, but a significant challenge is their heterogeneous integration into stretchable geometries on soft substrates. Here, we demonstrate a strategy for stretchable thin film transistors (2D S-TFT) based on wrinkled heterostructures on elastomer substrates where 2D materials formed the gate, source, drain, and channel, and characterized them with Raman spectroscopy and transport measurements.
keywords:
2D materials; 2D heterstructures; Stretchable electronics; transistors; buckling engineering
published:
2022-11-09
Wang, Junren; Konar, Megan; Dalin, Carole; Liu, Yu; Stillwell, Ashlynn S.; Xu, Ming; Zhu, Tingju
(2022)
This dataset includes the blue water intensity by sector (41 industries and service sectors) for provinces in China, economic and virtual water network flow for China in 2017, and the corresponding network properties for these two networks.
keywords:
Economic network; Virtual water; Supply chains; Network analysis; Multilayer; MRIO
published:
2023-04-12
Han, Edmund; Nahid, Shahriar Muhammad; Rakib, Tawfiqur; Nolan, Gillian; F. Ferrari, Paolo; Hossain, M. Abir ; Schleife, André ; Nam, SungWoo; Ertekin, Elif; van der Zande, Arend; Huang, Pinshane
(2023)
STEM images of kinks in α-In2Se3, DFT calculation of bending of α-In2Se3, PFM on as exfoliated and controllably bend α-In2Se3
published:
2024-01-30
Aishwarya, Anuva; Madhavan, Vidya
(2024)
The data files are for the paper entitled: Melting of the charge density wave by generation of pairs of topological defects in UTe2 to be published in Nature Physics. The data was obtained on a 300 mK custom designed Unisoku scanning tunneling microscope using the Nanonis module. All the data files have been named based on the Figure numbers that they represent.
keywords:
superconductivity; triplet; topology; heavy fermion; Kondo; magnetic field; charge density wave
published:
2023-07-31
Zhang, Yue; Hossain, Mohammad Abir; Hwang, Kelly; Ferrari, Paolo; Maduzia, Joe; Pena, Tera; Wu, Stephen; Ertekin, Elif; van der Zande, Arend
(2023)