Illinois Data Bank
Deposit Dataset
Find Data
Policies
Guides
Contact Us
Log in with NetID
Toggle navigation
Illinois Data Bank
Deposit Dataset
Find Data
Policies
Guides
Contact Us
Log in with NetID
Displaying 26 - 50 of 108 in total
<
1
2
3
4
5
>
25 per page
50 per page
Show All
Go
Clear Filters
Generate Report from Search Results
Subject Area
Physical Sciences (108)
Life Sciences (0)
Social Sciences (0)
Technology and Engineering (0)
Uncategorized
Arts and Humanities (0)
Funder
U.S. National Science Foundation (NSF) (47)
Other (23)
U.S. Department of Energy (DOE) (19)
U.S. National Institutes of Health (NIH) (5)
U.S. National Aeronautics and Space Administration (NASA) (3)
U.S. Geological Survey (USGS) (2)
Illinois Department of Transportation (IDOT) (1)
U.S. Department of Agriculture (USDA) (1)
Illinois Department of Natural Resources (IDNR) (0)
U.S. Army (0)
Publication Year
2021 (19)
2022 (18)
2024 (18)
2023 (14)
2019 (9)
2020 (9)
2016 (7)
2018 (7)
2025 (4)
2017 (3)
2009 (0)
2011 (0)
2012 (0)
2014 (0)
2015 (0)
License
CC BY (54)
CC0 (49)
custom (5)
Illinois Data Bank Dataset Search Results
Dataset Search Results
published: 2024-04-15
Lyu, Zhiheng; Lehan, Yao; Zhisheng, Wang; Chang, Qian; Zuochen, Wang; Jiahui, Li; Yufeng, Wang; Qian, Chen (2024): Data for Nanoscopic Imaging of Self-Propelled Ultrasmall Catalytic Nanomotors. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-0710191_V1
The dataset contains trajectories of Pt nanoparticles in 1.98 mM NaBH4 and NaCl, tracked under liquid-phase TEM. The coordinates (x, y) of nanoparticles are provided, together with the conversion factor that translates pixel size to actual distance. In the file, ∆t denotes the time interval and NaN indicates the absence of a value when the nanoparticle has not emerged or been tracked. The labeling of nanoparticles in the paper is also noted in the second row of the file.
keywords:
nanomotor; liquid-phase TEM
published: 2024-05-13
Gopalakrishnappa, Chandana; Li, Zeqian; Kuehn, Seppe (2024): Algae-bacteria interactions in droplets. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-9544313_V1
Supplemental data for the paper titled 'Environmental modulators of algae-bacteria interactions at scale'. Each of the excel workbooks corresponding to datasets 1, 2, and 3 contain a README sheet explaining the reported data. Dataset 4 comprising microscopy data contains a README text file describing the image files.
keywords:
Algae-bacteria interactions; high-throughput; microfluidic-droplet platform
published: 2024-05-30
Lyu, Fangzheng; Zhou, Lixuanwu; Park, Jinwoo; Baig, Furqan; Wang, Shaowen (2024): Data for "Mapping dynamic human sentiments of heat exposure with location-based social media data". University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-9405860_V1
This dataset contains all the datasets used in the study conducted for the research publication titled "Mapping dynamic human sentiments of heat exposure with location-based social media data". This paper develops a cyberGIS framework to analyze and visualize human sentiments of heat exposure dynamically based on near real-time location-based social media (LBSM) data. Large volumes and low-cost LBSM data, together with a content analysis algorithm based on natural language processing are used effectively to generate heat exposure maps from human sentiments on social media. ## What’s inside - A quick explanation of the components of the zip file * US folder includes the shapefile corresponding to the United State with County as spatial unit * Census_tract folder includes the shapefile corresponding to the Cook County with census tract as spatial unit * data/data.txt includes instruction to retrieve the sample data either from Keeling or figshare * geo/data20000.txt is the heat dictionary created in this paper, please refer to the corresponding publication to see the data creation process Jupyter notebook and code attached to this publication can be found at: https://github.com/cybergis/real_time_heat_exposure_with_LBSMD
keywords:
CyberGIS; Heat Exposure; Location-based Social Media Data; Urban Heat
published: 2024-05-29
Raghavan, Arjun; Romanelli, Marisa; Madhavan, Vidya (2024): Data for Atomic-Scale Visualization of a Cascade of Magnetic Orders in the Layered Antiferromagnet GdTe3. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4638513_V2
Data from manuscript Atomic-Scale Visualization of a Cascade of Magnetic Orders in the Layered Antiferromagnet GdTe3, to be published in npj Quantum Materials. Powerpoint file has details on how the data can be opened and how the data are labeled.
keywords:
Scanning Tunneling Microscopy; Physics; GdTe3; Rare-Earth Tritellurides
published: 2024-05-07
Nahid, Shahriar Muhammad; Nam, SungWoo; van der Zande, Arend (2024): Data for Depolarization Field Induced Photovoltaic Effect in Graphene/α-In2Se3/Graphene Heterostructures. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-3000962_V2
Optical, AFM, and PFM image of α-In2Se3; Short-circuit current and open circuit voltage maps, I-V curve for different intensities; Dependence of the short-circuit current density, open-circuit voltage, depolarization field, and efficiency on intensity and thickness; Benchmarking the performance.
published: 2021-04-18
Lyu, Fangzheng; Kang, Jeon-Young; Wang, Shaohua; Han, Su; Li, Zhiyu; Wang, Shaowen; Padmanabhan, Anand (2021): Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-0299659_V1
This dataset contains all the code, notebooks, datasets used in the study conducted for the research publication titled "Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19 Data". Specifically, this package include the artifacts used to conduct spatial-temporal analysis with space time kernel density estimation (STKDE) using COVID-19 data, which should help readers to reproduce some of the analysis and learn about the methods that were conducted in the associated book chapter. ## What’s inside - A quick explanation of the components of the zip file * Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19.ipynb is a jupyter notebook for this project. It contains codes for preprocessing, space time kernel density estimation, postprocessing, and visualization. * data is a folder containing all data needed for the notebook * data/county.txt: US counties information and fip code from Natural Resources Conservation Service. * data/us-counties.txt: County-level COVID-19 data collected from New York Times COVID-19 github repository on August 9th, 2020. * data/covid_death.txt: COVID-19 death information derived after preprocessing step, preparing the input data for STKDE. Each record is if the following format (fips, spatial_x, spatial_y, date, number of death ). * data/stkdefinal.txt: result obtained by conducting STKDE. * wolfram_mathmatica is a folder for 3D visulization code. * wolfram_mathmatica/Visualization.nb: code for visulization of STKDE result via weolfram mathmatica. * img is a folder for figures. * img/above.png: result of 3-D visulization result, above view. * img/side.png: result of 3-D visulization, side view.
keywords:
CyberGIS; COVID-19; Space-time kernel density estimation; Spatiotemporal patterns
published: 2022-04-11
Liu, Shanshan; Kontou, Eleftheria (2022): Data for Quantifying transportation energy vulnerability and its spatial patterns in the United States.. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-9337369_V2
This data set contains all the map data used for "Quantifying transportation energy vulnerability and its spatial patterns in the United States". The multiple dimensions (i.e., exposure, sensitivity, adaptive capacity) of transportation energy vulnerability (TEV) at the census tract level in the United States, the changes in TEV with electric vehicles adoption, and the detailed data for Chicago, Los Angeles, and New York are in the dataset.
keywords:
Transport energy; Vulnerability; Fuel costs; Electric vehicles
published: 2022-06-15
Wong, Tony; Oudshoorn, Luuk; Sofovich, Eliyahu; Green, Alex; Shah, Charmi; Indebetouw, Remy; Meixner, Margaret; Hacar, Alvaro; Nayak, Omnarayani; Tokuda, Kazuki; Bolatto, Alberto D.; Chevance, Melanie; De Marchi, Guido; Fukui, Yasuo; Hirschauer, Alec S.; Jameson, K. E.; Kalari, Venu; Lebouteiller, Vianney; Looney, Leslie W.; Madden, Suzanne C.; Onishi, Toshikazu; Roman-Duval, Julia; Rubio, Monica; Tielens, A. G. G. M. (2022): Data for: The 30 Doradus Molecular Cloud at 0.4 pc Resolution with ALMA: Physical Properties and the Boundedness of CO-emitting Structures. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-1671495_V1
12CO and 13CO emission maps of the 30 Doradus molecular cloud in the Large Magellanic Cloud, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 7. See the associated article in the Astrophysical Journal, and README file, for details. Please cite the article if you use these data.
keywords:
Radio astronomy
published: 2024-04-19
Zhang, Yue; Zhao, Helin; Huang, Siyuan; Hossain, Mohhamad Abir; van der Zande, Arend (2024): Enhancing Carrier Mobility In Monolayer MoS2 Transistors With Process Induced Strain. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4074704_V1
Read me file for the data repository ******************************************************************************* This repository has raw data for the publication "Enhancing Carrier Mobility In Monolayer MoS2 Transistors With Process Induced Strain". We arrange the data following the figure in which it first appeared. For all electrical transfer measurement, we provide the up-sweep and down-sweep data, with voltage units in V and conductance unit in S. All Raman modes have unit of cm^-1. ******************************************************************************* How to use this dataset All data in this dataset is stored in binary Numpy array format as .npy file. To read a .npy file: use the Numpy module of the python language, and use np.load() command. Example: suppose the filename is example_data.npy. To load it into a python program, open a Jupyter notebook, or in the python program, run: import numpy as np data = np.load("example_data.npy") Then the example file is stored in the data object. *******************************************************************************
published: 2024-01-30
BK, Prajna (2024): Data for Effect of Interaural Electrode/Channel Mismatch on Interaural Coherence for Cochlear Implants. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4136468_V1
This data set includes the cochlear implant (CI) electrodograms recorded in 2 different acoustic conditions using acoustic head KEMAR. It is a part of a study intended to explore the effect of interaural asymmetry on interaural coherence after CI processing.
keywords:
cochlear implant; electrodogram; KEMAR; interaural coherence
published: 2023-12-20
Xie, Yuxuan Richard; Castro, Daniel C.; Rubakhin, Stanislav S.; Trinklein, Timothy J.; Sweedler, Jonathan V.; Fan, Lam (2023): Integrative Multiscale Biochemical Mapping of the Brain via Deep-Learning-Enhanced High-Throughput Mass Spectrometry. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-9740536_V1
Important Note: the raw transient files need to be downloaded through this separate link: https://uofi.box.com/s/oagdxhea1wi8tvfij4robj0z0w8wq7j4. Once downloaded, place the file within the within the .d folder in the unzipped 20210930_ShortTransient_S3_5 folder to perform reconstruction step. The minimal datasets to run the computational pipeline MEISTER introduced in the manuscript titled "Integrative Multiscale Biochemical Mapping of the Brain via Deep-Learning-Enhanced High-Throughput Mass Spectrometry". The key steps of our computational pipeline include (1) tissue mass spectrometry imaging (MSI) reconstruction; (2) multimodal image registration and 3D reconstruction; (3) regional analysis; and (4) single-cell and tissue data integration. Detailed protocols to reproduce our results in the manuscript are provided with an example data set shared for learning the protocols. Our computational processing codes are implemented mostly in Python as well as MATLAB (for image registration).
keywords:
deep learning;mass spectrometry;single cells
published: 2023-06-29
Pandit, Akshay; Karakoc, Deniz Berfin; Konar, Megan (2023): Data for: Spatially detailed agricultural and food trade between China and the United States. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-3649756_V1
This database provides estimates of agricultural and food commodity flows [in both tons and $US] between the US and China for the year 2017. Pairwise information is provided between US states and Chinese provinces, and US counties and Chinese provinces for 7 Standardized Classification of Transported Goods (SCTG) commodity categories. Additionally, crosswalks are provided to match Harmonized System (HS) codes and China's Multi-Regional Input Output (MRIO) commodity sectors to their corresponding SCTG commodity codes. The included SCTG commodities are: - SCTG 01: Iive animals and fish - SCTG 02: cereal grains - SCTG 03: agricultural products (except for animal feed, cereal grains, and forage products) - SCTG 04: animal feed, eggs, honey, and other products of animal origin - SCTG 05: meat, poultry, fish, seafood, and their preparations - SCTG 06: milled grain products and preparations, and bakery products - SCTG 07: other prepared foodstuffs, fats and oils For additional information, please see the related paper by Pandit et al. (2022) in Environmental Research Letters. ADD DOI WHEN RECEIVED
keywords:
Food flows; High-resolution; County-scale; Bilateral; United States; China
published: 2024-03-28
Zhang, Yue; Zhao, Helin; Huang, Siyuan; Hossain, Mohhamad Abir; van der Zande, Arend (2024): Enhancing Carrier Mobility In Monolayer MoS2 Transistors With Process induced Strain. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-7519929_V1
Read me file for the data repository ******************************************************************************* This repository has raw data for the publication "Enhancing Carrier Mobility In Monolayer MoS2 Transistors With Process Induced Strain". We arrange the data following the figure in which it first appeared. For all electrical transfer measurement, we provide the up-sweep and down-sweep data, with voltage units in V and conductance unit in S. All Raman modes have unit of cm^-1. ******************************************************************************* How to use this dataset All data in this dataset is stored in binary Numpy array format as .npy file. To read a .npy file: use the Numpy module of the python language, and use np.load() command. Example: suppose the filename is example_data.npy. To load it into a python program, open a Jupyter notebook, or in the python program, run: import numpy as np data = np.load("example_data.npy") Then the example file is stored in the data object. *******************************************************************************
published: 2022-02-14
Yao, Yu; Curtis, Jeffrey; Ching, Joseph; Zheng, Zhonghua; Riemer, Nicole (2022): Data for: Quantifying the effects of mixing state on aerosol optical properties. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8157303_V1
This dataset contains simulation results from numerical model PartMC-MOSAIC used in the article "Quantifying the effects of mixing state on aerosol optical properties". This article is submitted to the journal Atmospheric Physics and Chemistry. There are total 100 scenario directories in this dataset, denoted from 00-99. Each scenario contains 25 NetCDF files hourly output from PartMC-MOSAIC simulations containing the simulated gas and particle information. The data was produced using version 2.5.0 of PartMC-MOSAIC. Instructions to compile and run PartMC-MOSAIC are available at https://github.com/compdyn/partmc. The chemistry code MOSAIC is available by request from Rahul.Zaveri@pnl.gov. For more details of reproducing the cases, please contact nriemer@illinois.edu and yuyao3@illinois.edu.
keywords:
Aerosol mixing state; Aerosol optical properties; Mie calculation; Black Carbon
published: 2024-01-04
Kim, Hyunchul; Zhao, Helin; van der Zande, Arend (2024): Stretchable thin-film transistors based on wrinkled graphene and MoS2 heterostructures. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-7325893_V1
This data set includes all of data related to stretchable TFTs based on 2D heterostructures including optical images of TFTs, Raman and Photoluminescence characteristics data, Transport measurement data, and AFM topography data. Abstract Two-dimensional (2D) materials are outstanding candidates for stretchable electronics, but a significant challenge is their heterogeneous integration into stretchable geometries on soft substrates. Here, we demonstrate a strategy for stretchable thin film transistors (2D S-TFT) based on wrinkled heterostructures on elastomer substrates where 2D materials formed the gate, source, drain, and channel, and characterized them with Raman spectroscopy and transport measurements.
keywords:
2D materials; 2D heterstructures; Stretchable electronics; transistors; buckling engineering
published: 2022-11-09
Wang, Junren; Konar, Megan; Dalin, Carole; Liu, Yu; Stillwell, Ashlynn S.; Xu, Ming; Zhu, Tingju (2022): Data for: Economic and Virtual Water Multilayer Networks in China. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-5215221_V1
This dataset includes the blue water intensity by sector (41 industries and service sectors) for provinces in China, economic and virtual water network flow for China in 2017, and the corresponding network properties for these two networks.
keywords:
Economic network; Virtual water; Supply chains; Network analysis; Multilayer; MRIO
published: 2023-04-12
Han, Edmund; Nahid, Shahriar Muhammad; Rakib, Tawfiqur; Nolan, Gillian; F. Ferrari, Paolo; Hossain, M. Abir ; Schleife, André ; Nam, SungWoo; Ertekin, Elif; van der Zande, Arend; Huang, Pinshane (2023): Data for Bend-induced ferroelectric domain walls in α-In2Se3. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-1187822_V1
STEM images of kinks in α-In2Se3, DFT calculation of bending of α-In2Se3, PFM on as exfoliated and controllably bend α-In2Se3
published: 2024-01-30
Aishwarya, Anuva; Madhavan, Vidya (2024): Data for Melting of the charge density wave by generation of pairs of topological defects in UTe2. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-6515700_V1
The data files are for the paper entitled: Melting of the charge density wave by generation of pairs of topological defects in UTe2 to be published in Nature Physics. The data was obtained on a 300 mK custom designed Unisoku scanning tunneling microscope using the Nanonis module. All the data files have been named based on the Figure numbers that they represent.
keywords:
superconductivity; triplet; topology; heavy fermion; Kondo; magnetic field; charge density wave
published: 2023-07-31
Zhang, Yue; Hossain, Mohammad Abir; Hwang, Kelly; Ferrari, Paolo; Maduzia, Joe; Pena, Tera; Wu, Stephen; Ertekin, Elif; van der Zande, Arend (2023): Dataset for Design and Pattern Strain in 2D materials. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-2595358_V1
published: 2023-04-06
Yao, Lehan; Lyu, Zhiheng; Li, Jiahui; Chen, Qian (2023): Data for Unsupervised Sinogram Inpainting for Nanoparticle Electron Tomography (UsiNet) for missing wedge correction. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-7963044_V1
Example data for https://github.com/chenlabUIUC/UsiNet The data contains computer simulated and experimental tilting series (or sinograms) of gold nanoparticles. Two training data examples are provided: 1. simulated_data.zip 2. experimental_data.zip In each zip folder, we include an image_data.zip and a training_data.zip. The former is for viewing and only the latter is needed for model training. For more details, please refer to our GitHub repository.
keywords:
electron tomography; deep learning
published: 2016-12-12
Zhang, Qian; Chunyan, Li; Braud, Dewitt (2016): LIDAR data for the Wax Lake delta. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-3764213_V1
This dataset is about a topographic LIDAR survey (saved in “waxlake-lidar.img”) that was conducted over the Wax Lake delta, between longitudes −91.5848 to −91.292 degrees, and latitudes 29.3647 to 29.6466 degrees. Different from other elevation data, the positive value in the LIDAR data indicates land elevation, while the zero value implies riverbed without identifying specific water depth.
keywords:
LIDAR; Wax Lake delta
published: 2023-03-24
Zhang, Jun (2023): Potential Impacts on Ozone and Climate from a Proposed Fleet of Supersonic Aircraft. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-0038951_V1
This datasets provide basis of our analysis in the paper - Potential Impacts on Ozone and Climate from a Proposed Fleet of Supersonic Aircraft. All datasets here can be categorized into emission data and model output data (WACCM). All the model simulations (background and perturbation) were run to steady-state and only the datasets used in analysis are archived here.
keywords:
NetCDF; Supersonic aircraft; Stratospheric ozone; Climate
published: 2021-11-23
Riemer, Nicole; Yao, Yu; Dawson, Matthew; Dabdub, Donald (2021): Data for: Evaluating the impacts of cloud processing on resuspended aerosol particles after cloud evaporation using a particle-resolved model. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8367769_V2
This dataset contains simulation results from PartMC-MOSAIC-CAPRAM used in the article ”Eval- uating the impacts of cloud processing on resuspended aerosol particles after cloud evaporation using a particle-resolved model”. In this V2, there are eight folders: one for urban plume simulation to provide the initial particle population for cloud processing, the other four folders are for the four cloud cycles simulated and the last two are for the coagulation cases. Within the urban plume simulation, there are 25 NetCDF files hourly output from PartMC-MOSAIC simulations containing the gas and particle information. Within the four cloud cycle folders, there are 25 subdirectories that contain the cloud processing results for aerosol population from urban plume environment. For each subdirectory, there are 31 NetCDF files out- put every minute from PartMC-MOSAIC-CAPRAM simulations containing aerosol and gas information after aqueous chemistry. Another two folders are for the cases considering Brownian coagulation and sedimentation coalescence. Each contained 93 NetCDF files, produced from repeating the 30-minutes simulations for three times to consider the coagulation randomness. The low polluted case folder includes the simulated cloud processing results for 25 urban plume cases with less aerosol number concentration. This dataset was used to investigate the effects of cloud processing on aerosol mixing state and CCN properties.
keywords:
cloud process; coagulation; aqueous chemistry; aerosol mixing state; CCN
published: 2022-10-22
Madhavan, Vidya; Aishwarya, Anuva (2022): Data for Evidence for a robust sign-changing s-wave order parameter in monolayer films of superconducting Fe(Se,Te)/Bi2Te3. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-6972172_V1
This dataset consists of all the files that are part of the manuscript titled "Evidence for a robust sign-changing s-wave order parameter in monolayer films of superconducting Fe(Se,Te)/Bi2Te3". For detailed information on the individual files refer to the readme file.
keywords:
thin film; mbe; topology; superconductivity; topological insulator; stm; spectroscopy; qpi
published: 2021-05-14
Abbamonte, Peter (2021): Data for Anomalous density fluctuations in a strange metal. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-2888536_V1
This is the complete dataset for the "Anomalous density fluctuations in a strange metal" Proceedings of the National Academy of Sciences publication (https://doi.org/10.1073/pnas.1721495115). This is an integration of the Zenodo dataset which includes raw M-EELS data. <b>METHODOLOGICAL INFORMATION</b> 1. Description of methods used for collection/generation of data: Data have been collected with a M-EELS instrument and according to the data acquisition protocol described in the original PNAS publication and in SciPost Phys. 3, 026 (2017) (doi: 10.21468/SciPostPhys.3.4.026) 2. Methods for processing the data: Raw data were collected with a channeltron-based M-EELS apparatus described in the reference PNAS publication and analyzed according to the procedure outlined both in the PNAS paper and in SciPost Phys. 3, 026 (2017) (doi: 10.21468/SciPostPhys.3.4.026). The raw M-EELS spectra at each momentum have been subject to minor data processing involving: (a) averaging of different acquisitions at the same conditions, (b) energy binning, (c) division of an effective Coulomb matrix element (which yields a structure factor S(q,\omega)), (d) antisymmetrization (which yields the imaginary chi) All these procedures are described in the PNAS paper. 3. Instrument- or software-specific information needed to interpret the data: These data are simple .txt or .dat files which can be read with any standard data analysis software, notably Python notebooks, MatLab, Origin, IgorPro, and others. We do not include scripts in order to provide maximum flexibility. 4. Relationship between files, if important: We divided in different folders raw data, structure factors and imaginary chi. <b>DATA-SPECIFIC INFORMATION</b> There are 8 folders within the Data_public_deposition_v1.zip. Each folder contain data needed to create the corresponding figure in the publication. <b>1. Fig1:</b> This folder contains 21 DAT files needed to plot the theory data in panels C and D, following this naming conventions: [chiA]or[chiB]or[Pi]_q_number.dat With chiA is the imaginary RPA charge susceptibility with a Coulomb interaction of electronically weakly coupled layers chiB is the imaginary RPA charge susceptibility with the usual 4\pi e^2/q^2 Coulomb interaction. Pi is the imaginary Lindhard polarizability. q is momentum in reciprocal lattice units Number is the numerical momentum value in reciprocal lattice units <b>2. Fig2:</b> Files needed to plot Fig. 2 of the PNAS paper. Contains 3 folders as listed below. The files in this folder are named following this convention: Bi2212_295K_(1,-1)_50eV_161107_q_number_2.16_avg.dat, 295K is the sample temperature (1,-1) is the momentum direction in reciprocal lattice units 50 eV is the incident e beam energy 161107 is the start date of the experiment in yymmdd format Q is the momentum Number is the momentum in reciprocal lattice units 2.16 is the energy range covered by the data in eV Avg identifies averaged data ImChi: is the imaginary susceptibility obtained by antisymmetryzing the structure factor Raw_avg_data: raw averaged M-EELS spectra Sqw: Structure factors derived from the M-EELS spectra <b>3. Fig3:</b> Files needed to plot Fig. 3 of the PNAS paper. OP/ OD prefix identifies optimally doped or overdosed sample data, respectively. ImChi: is the imaginary susceptibility obtained by antisymmetryzing the structure factor Raw_avg_data: raw averaged M-EELS spectra Sqw: Structure factors derived from the M-EELS spectra <b>4. Fig4:</b> Files needed to plot Fig. 4 of the PNAS paper. The _fit_parameters.dat file contains the fit parameters extracted according to the fit procedure described in the manuscript and at all momenta. ImChi: is the imaginary susceptibility obtained by antisymmetryzing the structure factor Raw_avg_data: raw averaged M-EELS spectra Sqw: Structure factors derived from the M-EELS spectra <b>5. FigS1:</b> Files needed to plot Fig. S1 of the PNAS paper. There are 5 files in this folder. DAT files are M-EELS data following the prior naming convention, while the two .txt files are digitized data from N. Nücker, U. Eckern, J. Fink, and P. Müller, Long-Wavelength Collective Excitations of Charge Carriers in High-Tc Superconductors, Phys. Rev. B 44, 7155(R) (1991), and K. H. G. Schulte, The interplay of Spectroscopy and Correlated Materials, Ph.D. thesis, University of Groningen (2002). <b>6. FigS2:</b> Files needed to plot Fig. S2 of the PNAS paper. ImChi: is the imaginary susceptibility obtained by antisymmetryzing the structure factor Raw_avg_data: raw averaged M-EELS spectra Sqw: Structure factors derived from the M-EELS spectra <b>7. FigS3:</b> Files needed to plot Fig. S3 of the PNAS paper. There are 2 files in this folder: 20K_phi_0_q_0.dat: is a M-EELS raw intensity at zero momentum transfer on Bi2212 at 20 K 295K_phi_0_q_0.dat: is a M-EELS raw intensity at zero momentum transfer on Bi2212 at 295 K <b>8. FigS4:</b> Files needed to plot Fig. S4 of the PNAS paper. The _fit_parameters.dat file contains the fit parameters extracted according to the fit procedure described in the manuscript and at all momenta. ImChi: is the imaginary susceptibility obtained by antisymmetryzing the structure factor Raw_avg_data: raw averaged M-EELS spectra Sqw: Structure factors derived from the M-EELS spectra
keywords:
Momentum resolved electron energy loss spectroscopy (M-EELS); cuprates; plasmons; strange metal