Displaying 76 - 100 of 656 in total

Subject Area

Life Sciences (353)
Social Sciences (136)
Physical Sciences (99)
Technology and Engineering (65)
Uncategorized (2)
Arts and Humanities (1)

Funder

Other (201)
U.S. National Science Foundation (NSF) (194)
U.S. Department of Energy (DOE) (68)
U.S. National Institutes of Health (NIH) (60)
U.S. Department of Agriculture (USDA) (43)
Illinois Department of Natural Resources (IDNR) (17)
U.S. National Aeronautics and Space Administration (NASA) (6)
U.S. Geological Survey (USGS) (6)
Illinois Department of Transportation (IDOT) (4)
U.S. Army (2)

Publication Year

2021 (108)
2022 (108)
2020 (96)
2023 (78)
2019 (72)
2018 (62)
2024 (57)
2017 (36)
2016 (30)
2025 (4)
2009 (1)
2011 (1)
2012 (1)
2014 (1)
2015 (1)

License

CC0 (363)
CC BY (273)
custom (20)

Datasets

published: 2023-03-15
 
This data set is related to the SoyFACE experiments, which are open-air agricultural climate change experiments that have been conducted since 2001. The fumigation experiments take place at the SoyFACE farm and facility in Champaign County, Illinois during the growing season of each year, typically between June and October. - The <i>"SoyFACE Plot Information 2001 to 2021"</i> file contains information about each year of the SoyFACE experiments, including the fumigation treatment type (CO2, O3, or a combination treatment), the crop species, the plots (also referred to as 'rings' and labeled with numbers between 2 and 31) used in each experiment, important experiment dates, and the target concentration levels or 'setpoints' for CO2 and O3 in each experiment. - This data set includes files with minute readings of the fumigation levels (<i>"SoyFACE 1-Minute Fumigation Data Files"</i> folder) from the SoyFACE experiments. The <i>"Soyface 1-Minute Fumigation Data Files"</i> folder contains sub-folders for each year of the experiments, each of which contains sub-folders for each ring used in that year's experiments. This data set also includes hourly data files for the fumigation experiments (<i>"SoyFACE Hourly Fumigation Data Files"</i> folder) created from the 1-minute files, and hourly ambient/weather data files for each year of the experiments (<i>"Hourly Weather and Ambient Data Files"</i> folder). The ambient CO2 and O3 data are collected at SoyFACE, and the weather data are collected from the SURFRAD and WARM weather stations located near the SoyFACE farm. - The <i>"Fumigation Target Percentages"</i> file shows how much of the time the CO2 and O3 fumigation levels are within a 10 or 20 percent margin of the target levels when the fumigation system is turned on. - The <i>"Matlab Files"</i> folder contains custom code (Aspray, E.K.) that was used to clean the <i>"SoyFACE 1-Minute Fumigation Data"</i> files and to generate the <i>"SoyFACE Hourly Fumigation Data"</i> and <i>"Fumigation Target Percentages"</i> files. Code information can be found in the <i>"SoyFACE Hourly Fumigation Data Explanation"</i> file. - Finally, the <i>" * Explanation"</i> files contain information about the column names, units of measurement, and other pertinent information for each data file. *<b>NOTE:</b> We have identified some files in the “SoyFACE 1-Minute Fumigation Data Files” folder in our SoyFACE data set submission that were not downloaded properly - the files were present in the folder, but the actual files were empty. V3 ensures that there are no longer any empty files in the data set.
keywords: SoyFACE; agriculture; agricultural; climate; climate change; atmosphere; atmospheric change; CO2; carbon dioxide; O3; ozone; soybean; fumigation; treatment
published: 2020-06-03
 
This dataset provides files for use in analysis of human land preference across Australasia, and in a localized analysis of land preference in Laos and Vietnam. All files can be imported into ArcGIS for visualization, and re-analyzed using the open source Maxent species distribution modeling program. CSV files contain known human presence sites for model validation. ASC files contain geographically coded environmental data for mean annual temperature and mean annual precipitation during the Last Glacial Maximum, as well as downward slope data. All ASC files are in the WGS 1984 Mercator map projection for visualization in ArcGIS and can be opened as text files in text editors supporting large file sizes.
keywords: human dispersal; ecological niche modeling; Australasia; Late Pleistocene; land preference
published: 2022-02-14
 
This dataset contains simulation results from numerical model PartMC-MOSAIC used in the article "Quantifying the effects of mixing state on aerosol optical properties". This article is submitted to the journal Atmospheric Physics and Chemistry. There are total 100 scenario directories in this dataset, denoted from 00-99. Each scenario contains 25 NetCDF files hourly output from PartMC-MOSAIC simulations containing the simulated gas and particle information. The data was produced using version 2.5.0 of PartMC-MOSAIC. Instructions to compile and run PartMC-MOSAIC are available at https://github.com/compdyn/partmc. The chemistry code MOSAIC is available by request from Rahul.Zaveri@pnl.gov. For more details of reproducing the cases, please contact nriemer@illinois.edu and yuyao3@illinois.edu.
keywords: Aerosol mixing state; Aerosol optical properties; Mie calculation; Black Carbon
published: 2023-02-23
 
Coups d'État are important events in the life of a country. They constitute an important subset of irregular transfers of political power that can have significant and enduring consequences for national well-being. There are only a limited number of datasets available to study these events (Powell and Thyne 2011, Marshall and Marshall 2019). Seeking to facilitate research on post-WWII coups by compiling a more comprehensive list and categorization of these events, the Cline Center for Advanced Social Research (previously the Cline Center for Democracy) initiated the Coup d'État Project as part of its Societal Infrastructures and Development (SID) project. More specifically, this dataset identifies the outcomes of coup events (i.e. realized or successful coups, unrealized coup attempts, or thwarted conspiracies) the type of actor(s) who initiated the coup (i.e. military, rebels, etc.), as well as the fate of the deposed leader. This current version, Version 2.1.2, adds 6 additional coup events that occurred in 2022 and updates the coding of an attempted coup event in Kazakhstan in January 2022. Version 2.1.1 corrects a mistake in version 2.1.0, where the designation of “dissident coup” had been dropped in error for coup_id: 00201062021. Version 2.1.1 fixes this omission by marking the case as both a dissident coup and an auto-coup. Version 2.1.0 added 36 cases to the data set and removes two cases from the v2.0.0 data. This update also added actor coding for 46 coup events and adds executive outcomes to 18 events from version 2.0.0. A few other changes were made to correct inconsistencies in the coup ID variable and the date of the event. Changes from the previously released data (v2.0.0) also include: 1. Adding additional events and expanding the period covered to 1945-2022 2. Filling in missing actor information 3. Filling in missing information on the outcomes for the incumbent executive 4. Dropping events that were incorrectly coded as coup events <br> <b>Items in this Dataset</b> 1. <i>Cline Center Coup d'État Codebook v.2.1.2 Codebook.pdf</i> - This 16-page document provides a description of the Cline Center Coup d’État Project Dataset. The first section of this codebook provides a summary of the different versions of the data. The second section provides a succinct definition of a coup d’état used by the Coup d’État Project and an overview of the categories used to differentiate the wide array of events that meet the project's definition. It also defines coup outcomes. The third section describes the methodology used to produce the data. <i>Revised February 2023</i> 2. <i>Coup Data v2.1.2.csv</i> - This CSV (Comma Separated Values) file contains all of the coup event data from the Cline Center Coup d’État Project. It contains 29 variables and 981 observations. <i>Revised February 2023</i> 3. <i>Source Document v2.1.2.pdf</i> - This 315-page document provides the sources used for each of the coup events identified in this dataset. Please use the value in the coup_id variable to identify the sources used to identify that particular event. <i>Revised February 2023</i> 4. <i>README.md</i> - This file contains useful information for the user about the dataset. It is a text file written in markdown language. <i>Revised February 2023</i> <br> <b> Citation Guidelines</b> 1. To cite the codebook (or any other documentation associated with the Cline Center Coup d’État Project Dataset) please use the following citation: Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Scott Althaus. 2023. “Cline Center Coup d’État Project Dataset Codebook”. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.2. February 23. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V6 2. To cite data from the Cline Center Coup d’État Project Dataset please use the following citation (filling in the correct date of access): Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Emilio Soto. 2023. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.2. February 23. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V6
published: 2015-12-16
 
This dataset contains the data for PASTA and UPP. PASTA data was used in the following articles: Mirarab, Siavash, Nam Nguyen, Sheng Guo, Li-San Wang, Junhyong Kim, and Tandy Warnow. “PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.” Journal of Computational Biology 22, no. 5 (2015): 377–86. doi:10.1089/cmb.2014.0156. Mirarab, Siavash, Nam Nguyen, and Tandy Warnow. “PASTA: Ultra-Large Multiple Sequence Alignment.” Edited by Roded Sharan. Research in Computational Molecular Biology, 2014, 177–91. UPP data was used in: Nguyen, Nam-phuong D., Siavash Mirarab, Keerthana Kumar, and Tandy Warnow. “Ultra-Large Alignments Using Phylogeny-Aware Profiles.” Genome Biology 16, no. 1 (December 16, 2015): 124. doi:10.1186/s13059-015-0688-z.
published: 2019-08-13
 
Multiple sequence alignments from concatenated nuclear and mitochondrial genes and resulting phylogenetic tree files of fruit doves and their close relatives. Files include: BEAST input XML file (fruit_dove_beast_input.xml); a maximum clade credibility tree from a BEAST analysis (fruit_dove_beast_mcc.tre); concatenated multiple sequence alignment NEXUS files for the novel dataset (fruit_dove_concatenated_alignment.nex, 76 taxa, 4,277 characters) and the dataset with additional sequences (fruit_dove_plus_cibois_data_concatenated_alignment.nex, 204 taxa, 4,277 characters), both of which contain a MrBayes block including partition information; and 50% majority-rule consensus trees generated from MrBayes analyses, using the NEXUS alignment files as inputs (fruit_dove_mrbayes_consensus.tre, fruit_dove_plus_cibois_data_mrbayes_consensus.tre).
keywords: fruit doves; multiple sequence alignment; phylogeny; Aves: Columbidae
published: 2020-06-02
 
The text file contains the original data used in the phylogenetic analyses of Xue et al. (2020: Systematic Entomology, in press). The text file is marked up according to the standard NEXUS format commonly used by various phylogenetic analysis software packages. The file will be parsed automatically by a variety of programs that recognize NEXUS as a standard bioinformatics file format. The first six lines of the file identify the file as NEXUS, indicate that the file contains data for 89 taxa (species) and 2676 characters, indicate that the first 2590 characters are DNA sequence and the last 86 are morphological, that gaps inserted into the DNA sequence alignment and inapplicable morphological characters are indicated by a dash, and that missing data are indicated by a question mark. The file contains aligned nucleotide sequence data for 5 gene regions and 86 morphological characters. The positions of data partitions are indicated in the mrbayes block of commands for the phylogenetic program MrBayes at the end of the file (Subset1 = 16S gene; Subset2 = 28S gene; Subset3 = COI gene; Subset 4 = Histone H3 and H2A genes). The mrbayes block also contains instructions for MrBayes on various non-default settings for that program. These are explained in the original publication. Descriptions of the morphological characters and more details on the species and specimens included in the dataset are provided in the supplementary document included as a separate pdf, also available from the journal website. The original raw DNA sequence data are available from NCBI GenBank under the accession numbers indicated in the supplementary file.
keywords: phylogeny; DNA sequence; morphology; Insecta; Hemiptera; Cicadellidae; leafhopper; evolution; 28S rDNA; 16S rDNA; histone H3; histone H2A; cytochrome oxidase I; Bayesian analysis
published: 2020-02-12
 
This dataset contains the results of a three month audit of housing advertisements. It accompanies the 2020 ICWSM paper "Auditing Race and Gender Discrimination in Online Housing Markets". It covers data collected between Dec 7, 2018 and March 19, 2019. There are two json files in the dataset: The first contains a list of json objects representing advertisements separated by newlines. Each object includes the date and time it was collected, the image and title (if collected) of the ad, the page on which it was displayed, and the training treatment it received. The second file is a list of json objects representing a visit to a housing lister separated by newlines. Each object contains the url, training treatment applied, the location searched, and the metadata of the top sites scraped. This metadata includes location, price, and number of rooms. The dataset also includes the raw images of ads collected in order to code them by interest and targeting. These were captured by selenium and named using a perceptive hash to de-duplicate images.
keywords: algorithmic audit; advertisement audit;
published: 2021-10-27
 
Shared dataset consists of 16S sequencing data of microbial communities. Each community is composed of heterotrophic bacteria derived from one of two soil samples and the model algae Chlamydomonas reinhardtii. Each comunity was placed in a materially closed environment with an initial supply of carbon in the media and subjected to light-dark cycles. The closed microbial ecosystems (CES) survived via carbon cycling. Each CES was subjected to rounds of dilution, after which the community was sequenced (data provided here). The shared dataset allowed us to conclude that CES consistently self-assembled to cycle carbon (data not provided) via conserved metabolic capabilites (data not provided) dispite differences in taxonomic composition (data provided). --------------------------- Naming convention: [soil sample = A or B][CES replicate = 1,2,3, or 4]_[round number = 1,2,3,or 4]_[reverse read = R or forward read = F]_filt.fastq Example -- A1_r1_F_filt.fastq means soil sample A, CES replicate 1, end of round1, forward read
keywords: 16S seq; .fastq; closed microbial ecosystems; carbon cycling
published: 2018-07-29
 
This repository includes scripts, datasets, and supplementary materials for the study, "NJMerge: A generic technique for scaling phylogeny estimation methods and its application to species trees", presented at RECOMB-CG 2018. The supplementary figures and tables referenced in the main paper can be found in njmerge-supplementary-materials.pdf. The latest version of NJMerge can be downloaded from Github: https://github.com/ekmolloy/njmerge. ***When downloading datasets, please note that the following errors.*** In README.txt, lines 37 and 38 should read: + fasttree-exon.tre contains lines 1-25, 1-100, or 1-1000 of fasttree-total.tre + fasttree-intron.tre contains lines 26-50, 101-200, or 1001-2000 of fasttree-total.tre Note that the file names (fasttree-exon.tre and fasttree-intron.tre) are swapped. In tools.zip, the compare_trees.py and the compare_tree_lists.py scripts incorrectly refer to the "symmetric difference error rate" as the "Robinson-Foulds error rate". Because the normalized symmetric difference and the normalized Robinson-Foulds distance are equal for binary trees, this does not impact the species tree error rates reported in the study. This could impact the gene tree error rates reported in the study (see data-gene-trees.csv in data.zip), as FastTree-2 returns trees with polytomies whenever 3 or more sequences in the input alignment are identical. Note that the normalized symmetric difference is always greater than or equal to the normalized Robinson-Foulds distance, so the gene tree error rates reported in the study are more conservative. In njmerge-supplementary-materials.pdf, the alpha parameter shown in Supplementary Table S2 is actually the divisor D, which is used to compute alpha for each gene as follows. 1. For each gene, a random value X between 0 and 1 is drawn from a uniform distribution. 2. Alpha is computed as -log(X) / D, where D is 4.2 for exons, 1.0 for UCEs, and 0.4 for introns (as stated in Table S2). Note that because the mean of the uniform distribution (between 0 and 1) is 0.5, the mean alpha value is -log(0.5) / 4.2 = 0.16 for exons, -log(0.5) / 1.0 = 0.69 for UCEs, and -log(0.5) / 0.4 = 1.73 for introns.
keywords: phylogenomics; species trees; incomplete lineage sorting; divide-and-conquer
published: 2024-01-04
 
This data set includes all of data related to stretchable TFTs based on 2D heterostructures including optical images of TFTs, Raman and Photoluminescence characteristics data, Transport measurement data, and AFM topography data. Abstract Two-dimensional (2D) materials are outstanding candidates for stretchable electronics, but a significant challenge is their heterogeneous integration into stretchable geometries on soft substrates. Here, we demonstrate a strategy for stretchable thin film transistors (2D S-TFT) based on wrinkled heterostructures on elastomer substrates where 2D materials formed the gate, source, drain, and channel, and characterized them with Raman spectroscopy and transport measurements.
keywords: 2D materials; 2D heterstructures; Stretchable electronics; transistors; buckling engineering
published: 2014-10-29
 
This dataset provides the data for Nguyen, Nam-phuong, et al. "TIPP: taxonomic identification and phylogenetic profiling." Bioinformatics 30.24 (2014): 3548-3555.
published: 2023-03-08
 
A stochastic domination analysis model was developed to examine the effect that emerging carbon markets can have on the spatially varying returns and risk profiles of bioenergy crops relative to conventional crops. The code is written in MATLAB, and includes the calculated output. See the README file for instructions to run the code.
keywords: bioenergy crops; economic modeling; stochastic domination analysis model;
published: 2018-12-20
 
File Name: Inclusion_Criteria_Annotation.csv Data Preparation: Xiaoru Dong Date of Preparation: 2018-12-14 Data Contributions: Jingyi Xie, Xiaoru Dong, Linh Hoang Data Source: Cochrane systematic reviews published up to January 3, 2018 by 52 different Cochrane groups in 8 Cochrane group networks. Associated Manuscript authors: Xiaoru Dong, Jingyi Xie, Linh Hoang, and Jodi Schneider. Associated Manuscript, Working title: Machine classification of inclusion criteria from Cochrane systematic reviews. Description: The file contains lists of inclusion criteria of Cochrane Systematic Reviews and the manual annotation results. 5420 inclusion criteria were annotated, out of 7158 inclusion criteria available. Annotations are either "Only RCTs" or "Others". There are 2 columns in the file: - "Inclusion Criteria": Content of inclusion criteria of Cochrane Systematic Reviews. - "Only RCTs": Manual Annotation results. In which, "x" means the inclusion criteria is classified as "Only RCTs". Blank means that the inclusion criteria is classified as "Others". Notes: 1. "RCT" stands for Randomized Controlled Trial, which, in definition, is "a work that reports on a clinical trial that involves at least one test treatment and one control treatment, concurrent enrollment and follow-up of the test- and control-treated groups, and in which the treatments to be administered are selected by a random process, such as the use of a random-numbers table." [Randomized Controlled Trial publication type definition from https://www.nlm.nih.gov/mesh/pubtypes.html]. 2. In order to reproduce the relevant data to this, please get the code of the project published on GitHub at: https://github.com/XiaoruDong/InclusionCriteria and run the code following the instruction provided.
keywords: Inclusion criteria, Randomized controlled trials, Machine learning, Systematic reviews
published: 2022-04-19
 
This data repository includes the features and the trained backbone parameters used in the ICLR 2022 Paper "On the Importance of Firth Bias Reduction in Few-Shot Classification". The code accompanying this data is open-source and available at https://github.com/ehsansaleh/firth_bias_reduction The code and the data have three modules: 1. The "code_firth" module (10 files) relates to the basic ResNet backbones and logistic classifiers (e.g., Figures 2 and 3 in the main paper). 2. The "code_s2m2rf" module (2 files) relates to the S2M2R feature backbones and cosine classifiers (e.g., Figure 4 in the main paper). 3. The "code_dcf" module (3 files) relates to the few-shot Distribution Calibration (DC) method (e.g., Table 1 in the main paper). The relevant files for each module have the module name as a prefix in their name. 1. For instance, the "code_dcf_features.tar" file should be placed at the "features" directory of the "code_dcf" module. 2. As another example, "code_firth_features_cifarfs_novel.tar" should be placed in the "features" directory of the "code_firth" module, and it includes the features extracted from the novel split of mini-ImageNet dataset. Each tar-ball should be extracted in its relevant directory, and the md5 check-sums of the extracted files are also provided in the open-source code repository for verification. Please note that the actual datasets of images are not included here (since we do not own those datasets). However, helper scripts for automatically downloading the original datasets are also provided in the every module and sub-directory of the GitHub code repository.
keywords: Computer Vision; Few-Shot Classification; Few-Shot Learning; Firth Bias Reduction
published: 2019-03-25
 
This dataset contains genotypic and phenotypic data, R scripts, and the results of analysis pertaining to a multi-location field trial of Miscanthus sinensis. Genome-wide association and genomic prediction were performed for biomass yield and 14 yield-component traits across six field trial locations in Asia and North America, using 46,177 single-nucleotide polymorphism (SNP) markers mined from restriction site-associated DNA sequencing (RAD-seq) and 568 M. sinensis accessions. Genomic regions and candidate genes were identified that can be used for breeding improved varieties of M. sinensis, which in turn will be used to generate new M. xgiganteus clones for biomass.
keywords: miscanthus; genotyping-by-sequencing (GBS); genome-wide association studies (GWAS); genomic selection
published: 2024-02-15
 
Dataset includes the dataset for estimating bat density from acoustic data and the R code. The data support a publication by Meredith L. Hoggatt, Clarissa A. Starbuck, and Joy M. O'Keefe entitled Acoustic monitoring yields informative bat population density estimates.
keywords: acoustics; bats; monitoring; population density; random encounter model
published: 2019-02-22
 
This dataset includes measurements taken during the experiments on patterns of alluvial cover over bedrock. The dataset includes an hour worth of timelapse images taken every 10s for eight different experimental conditions. It also includes the instantaneous water surface elevations measured with eTapes at a frequency of 10Hz for each experiment. The 'Read me Data.txt' file explains in more detail the contents of the dataset.
keywords: bedrock; erosion; alluvial; meandering; alluvial cover; sinuosity; flume; experiments; abrasion;
published: 2020-07-16
 
Dataset to be for SocialMediaIE tutorial
keywords: social media; deep learning; natural language processing
published: 2022-02-11
 
Upon treatment removal, spontaneous and random reactivation of latently infected T cells remains a major barrier toward curing HIV. Due to its stochastic nature, fluctuations in gene expression (or “noise”) can bias HIV reactivation from latency, and conventional drug screens for mean gene expression neglect compounds that modulate noise. Here we present a time-lapse fluorescence microscopy image set obtained from a Jurkat T-cell line, infected with a minimal HIV gene circuit, treated with 1,806 small molecule compounds, and imaged for 48 hours. In addition, the single-cell time-dependent reporter dynamics (single-cell gene expression intensity and noise trajectories) extracted from the image dataset are included. Based on this dataset, a total of 5 latency promoting agents of HIV was found through further experimentation in Lu et al., PNAS 2021 (doi: 10.1073/pnas.2012191118). For a detailed description of the dataset, please refer to the readme file.
keywords: HIV; latency; drug screen; fluorescence microscopy; time-lapse; microscopy; single-cell data; noise; gene expression fluctuation;
published: 2022-03-11
 
Data sets relating to the manuscript “Long-term yields in annual and perennial bioenergy crops in the Midwestern USA” published in Global Change Biology Bioenergy. Field data, including annual peak biomass and harvest yields from maize/soy, miscanthus, switchgrass, and prairie field trials from 2008-2018 are included. Peak and harvest biomass for fertilized and unfertilized miscanthus are included from 2014-2018.
keywords: miscanthus; switchgrass; yield; drought; crop; perennial; bioenergy
published: 2024-04-05
 
The following files include specimen information, DNA sequence data, and additional information on the analyses used to reconstruct the phylogeny of the leafhopper genus Neoaliturus as described in the Methods section of the original paper: 1. Taxon_sampling.csv: contains data on the individual specimens from which DNA was extracted, including sample code, taxon name, collection data (locality, date and name of collector) and museum unique identifier. 2. Alignments.zip: a ZIP archive containing 432 separate FASTA files representing the aligned nucleotide sequences of individual gene loci used in the analysis. 3. Concatenated_Matrix.fa: is a FASTA file containing the concatenated individual gene alignments used for the maximum likelihood analysis in IQ-TREE. 4. Genes_and_Loci.rtf: identifies the individual genes and loci used in the analysis. The partition name is the same as the name of the individual alignment file in the zipped Alignments folder. 5. Partitions_best_scheme.nex: is a text file in the standard NEXUS format that indicates the names of the individual data partitions and their locations in the concatenated matrix, and also indicates the substitution model for each partition. 6. (New in this version 2) Scripts & Description.zip includes 8 custom shell or perl scripts used to assemble the DNA sequence data by perform reciprocal blast searches between the reference sequences and assemblies for each sample, extract the best sequences based on the blast searches, screen the hits for each locus and keep only the best result, and generate the nucleotide sequence dataset for the predicted orthologues (see the file description.txt for details). 7. (New in this version 2) Full_genetic_distances_matrix.csv shows the genetic distances between pairs of samples in the datset (proportion of nucleotides that differ between samples).
keywords: leafhopper; phylogeny; anchored-hybrid-enrichment; DNA sequence; insect
published: 2024-02-16
 
Sample data from one typical phantom test and one deidentified shunt patient test (shown in Fig. 8 of the MRM paper), with the corresponding analysis code for the Shunt-FENSI technique. For the MRM paper “Measuring CSF Shunt Flow with MRI Using Flow Enhancement of Signal Intensity (FENSI)”
keywords: Shunt-FENSI; MRM; Hydrocephalus; VP Shunt; Flow Quantification; Pediatric Neurosurgery; Pulse Sequence; Signal Simulation
published: 2016-12-20
 
Scripts and example data for AIDData (aiddata.org) processing in support of forthcoming Nakamura dissertation. This dataset includes two sets of scripts and example data files from an aiddata.org data dump. Fuller documentation about the functionality for these scripts is within the readme file. Additional background information and description of usage will be in the forthcoming Nakamura dissertation (link will be added when available). Data originally supplied by Nakamura. Python code and this readme file created by Wickes. Data included within this deposit are examples to demonstrate execution. Roughly, there are two python scripts in here: keyword_search.py, designed to assist in finding records matching specific keywords, and matching_tool.ipynb, designed to assist in detection of which records are and are not contained within a keyword results file and an aiddata project data file.
keywords: aiddata; natural resources
published: 2021-11-05
 
This data set contains survey results from a 2021 survey of University of Illinois University Library employees conducted as part of the Becoming A Trans Inclusive Library Project to evaluate the awareness of University of Illinois faculty, staff, and student employees regarding transgender identities, and to assess the professional development needs of library employees to better serve trans and gender non-conforming patrons. The survey instrument is available in the IDEALS repository: http://hdl.handle.net/2142/110080.
keywords: transgender awareness, academic library, gender identity awareness, professional development opportunities