Displaying 376 - 400 of 686 in total
Subject Area
Funder
Publication Year
License
Illinois Data Bank Dataset Search Results

Dataset Search Results

published: 2019-10-05
 
This dataset contains collected and aggregated network information from NCSA’s Blue Waters system, which is comprised of 27,648 nodes connected via Cray Gemini* 3D torus (dimension 24x24x24) interconnect, from Jan/01/2017 to May/31/2017. Network performance counters for links are exposed via Cray's gpcdr (<a href="https://github.com/ovis-hpc/ovis/wiki/gpcdr-kernel-module">https://github.com/ovis-hpc/ovis/wiki/gpcdr-kernel-module</a>) kernel module. Lightweight Distributed Metric Service ([LDMS](<a href="https://github.com/ovis-hpc/ovis">https://github.com/ovis-hpc/ovis</a>)) is used to sampled the performance counters at 60 second intervals. Please read "README.md" file. <b>Acknowledgement:</b> This dataset is collected as a part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.
keywords: HPC; Interconnect; Network; Congestion; Blue Waters; Dataset
published: 2021-11-19
 
This is a general description of the datasets included in this upload; details of each dataset can be found in the individual README.txt in each compressed folder. We have: 1. ROSE-HF.tar.gz 2. ROSE-LF.tar.gz HF (high fragmentary): 50% of the sequences are made fragmentary, which have average lengths of 25% of the original lengths with a standard deviation of 60 bp. LF (low fragmentary): 25% of the sequences are made fragmentary, which have average lengths of 50% of the original lengths with a standard deviation of 60 bp. The seven ROSE datasets made fragmentary are: 1000L1, 1000L3, 1000L4, 1000M3, 1000S1, 1000S2 and 1000S4. "ROSE-HF.tar.gz" contains HF versions of the seven ROSE datasets. "ROSE-LF.tar.gz" contains LF versions of the seven ROSE datasets.
keywords: ROSE; simulation; fragmentary
published: 2022-03-20
 
Data for "Generic character of charge and spin density waves in superconducting cuprates". - Neutron scattering data for SDW - RSXS scans of CDW of LESCO x=0.10, 0.125, 0.15, 0.17, 0.20 at various temperatures. - Temperature dependence of CDW peak intensity, correlation length, Qcdw (Lorentzian fit, S(q,T) fit, Landau-Ginzburg fit) - XAS data of LESCO x=0.10, 0.125, 0.15, 0.17, 0.20
published: 2020-09-18
 
Restriction site-associated DNA sequencing (RAD-seq) data from 643 Miscanthus accessions from a diversity panel, including 613 Miscanthus sacchariflorus, three M. sinensis, and 27 M. xgiganteus. DNA was digested with PstI and MspI, and single-end Illumina sequencing was performed adjacent to the PstI site. Variant and genotype calling was performed with TASSEL-GBSv2, using the Miscanthus sinensis v7.1 reference genome from Phytozome 12 (https://phytozome.jgi.doe.gov). Additional ploidy-aware genotype calling was performed by polyRAD v1.1.
keywords: variant call format (VCF); genotyping-by-sequencing (GBS); single nucleotide polymorphism (SNP); grass; genetic diversity; biomass
published: 2020-08-01
 
The Empoascini_morph_data.nex text file contains the original data used in the phylogenetic analyses of Xu et al. (Systematic Entomology, in review). The text file is marked up according to the standard NEXUS format commonly used by various phylogenetic analysis software packages. The file will be parsed automatically by a variety of programs that recognize NEXUS as a standard bioinformatics file format. The first nine lines of the file indicate the file type (Nexus), that 110 taxa were analyzed, that a total of 99 characters were analyzed, the format of the data, and specification for symbols used in the dataset to indicate different character states. For species that have more than one state for a particular character, the states are enclosed in square brackets. Question marks represent missing data.The pdf file, Appendix1.pdf, is available here and describes the morphological characters and character states that were scored in the dataset. The data analyses are described in the cited original paper.
keywords: Hemiptera; Cicadellidae; morphology; biogeography; evolution
published: 2021-02-28
 
This dataset contains the RegCM4 simulations used in the article " Implementation of dynamic ageing of carbonaceous aerosols in regional climate model RegCM". This dataset was used to investigate the impact of a new aging parameterisation scheme implemented in a regional climate model RegCM4. The dataset contains two sets of simulations: Expt_fix and Expt_dyn. It consists of the seasonal mean and daily mean values of the variables that were used to create the visualizations of this study. The Expt_fix and Expt_dyn dataset contain 34 and 38 NetCDF files, respectively. The CERES_vs_2expts_new.mat file is the comparison between CERES shortwave downward flux at the surface and same model outputs from two experiments for clear sky and all sky conditions. -------------------------------------------------- The following information about the dataset was generated on 2021-01-08 by SUDIPTA GHOSH <b>GENERAL INFORMATION</b> <i>1. Date of data collection (single date, range, approximate date):</i> 2019-01-01 to 2019-12-31 <i>2. Geographic location of data collection:</i> Urbana-Champaign,Illinois, USA <i>3. Information about funding sources that supported the collection of the data:</i> This work is supported by the MoEFCC under the NCAP-COALESCE project [Grant No. 14/10/2014-CC]. The first author acknowledges DST-INSPIRE fellowship [IF150055] and Fulbright-Kalam Climate Doctoral fellowship. N. R. acknowledges funding from NSF AGS-1254428 and DOE grant DE-SC0019192. Department of Science and Technology, Funds for Improvement of Science and Technology infrastructure in universities and higher educational institutions (DST-FIST) grant (SR/FST/ESII-016/2014) are acknowledged for the computing support. <b>DATA & FILE OVERVIEW</b> <i>1. File List:</i> Expt_fix and Expt_dyn datasets contain the analysed seasonal means and daily means of the variables that have been used to create the visualizations of this study. Each of the Expt_fix and Expt_dyn datasets contains 34 and 38 NetCDF files, respectively. <i>2. Relationship between files, if important:</i> NA <i>3. Additional related data collected that was not included in the current data package:</i> No <b>METHODOLOGICAL INFORMATION</b> <i>1. Description of methods used for collection/generation of data: </i> The model RegCM4 code is freely available online from <a href="http://gforge.ictp.it/gf/project/regcm/">http://gforge.ictp.it/gf/project/regcm/</a>. The anthropogenic aerosol emissions considered for the simulations are taken from IIASA inventory. The data used can be easily accessed online <a href="http://clima-dods.ictp.it/regcm4/">http://clima-dods.ictp.it/regcm4/</a> website. TRMM observed precipitation data can be assessed from <a href="https://giovanni.gsfc.nasa.gov/giovanni/">https://giovanni.gsfc.nasa.gov/giovanni/</a> website. CRU temperature data is available at <a href="https://crudata.uea.ac.uk/cru/data/hrg/">https://crudata.uea.ac.uk/cru/data/hrg/</a>. CERES satellite surface shortwave downward fluxes are available at <a href="https://ceres.larc.nasa.gov/data/">https://ceres.larc.nasa.gov/data/</a> website. Input files for the RegCM4 model are archived in <a href="http://clima-dods.ictp.it/regcm4/">http://clima-dods.ictp.it/regcm4/</a> website. This dataset contains the RegCM4 simulations used in the article " Implementation of dynamic ageing of carbonaceous aerosols in regional climate model RegCM ". Two sets of simulations: Expt_fix and Expt_dyn consists of the output data . This dataset only contains the analysed seasonal mean and daily mean of the variables that have been used to create the visualizations of this study. Each of Expt_fix and Expt_dyn contains 34 and 38 NetCDF files respectively. This dataset was used to investigate the impact of a new aging parameterisation scheme implemented in a regional climate model RegCM4. <i>2. Methods for processing the data:</i> Seasonal Mean and daily average values were extracted from 6-hourly model output. <i>3. Instrument- or software-specific information needed to interpret the data:</i> CDO-1.7.1, Grads-2.0.a9, Matlab2016b <i>4. Standards and calibration information, if appropriate:</i> NA <i>5. Environmental/experimental conditions:</i> NA <i>6. Describe any quality-assurance procedures performed on the data:</i> NA <i>7. People involved with sample collection, processing, analysis and/or submission:</i> Sudipta Ghosh, Nicole Riemer, Graziano Giuliani, Filippo Giorgi, Dilip Ganguly, Sagnik Dey <b>DATA-SPECIFIC INFORMATION FOR: Expt_fix_data.tar.gz</b> <i>1. Number of variables:</i> 29 <i>2. Number of cases/rows:</i> NA <i>3. Variable List:</i> Mass concentration (Kg m-3) of BC, BC_HB, BC_HL, OC, OC_HB, OC_HL; Columnar burden (mg m-2)] of BC, BC_HL, BC_HB, OC; Dry deposition flux (mg m-2 day-1) of BC_HB, BC_HL, OC_HB, OC_HL; Wet deposition flux due washout (mg m-2 day-1) of BC_HB, BC_HL, OC_HB, OC_HL; Wet deposition flux due to rainout (mg m-2 day-1) of BC_HB, BC_HL OC_HB, OC_HL; AOD (unit less), precipitation (Kg m-2 s-1), temperature (K) , v-wind (m s-1), u-wind (m s-1), Surface shortwave downward flux (W m-2), Shortwave radiative forcing at the surface and top of atmosphere (W m-2) <b>DATA-SPECIFIC INFORMATION FOR: Expt_dyn_data.tar.gz</b> <i>1. Number of variables:</i> 30 <i>2. Number of cases/rows:</i> NA <i>3. Variable List:</i> Mass concentration (Kg m-3) of BC, BC_HB, BC_HL, OC, OC_HB, OC_HL; Columnar burden (mg m-2)] of BC, BC_HL, BC_HB, OC; Dry deposition flux (mg m-2 day-1) of BC_HB, BC_HL OC_HB, OC_HL; Wet deposition flux due washout (mg m-2 day-1) of BC_HB, BC_HL OC_HB, OC_HL; Wet deposition flux due to rainout (mg m-2 day-1) of BC_HB, BC_HL OC_HB, OC_HL; AOD (unit less); precipitation (Kg m-2 s-1); temperature (K); v-wind (m s-1); u-wind (m s-1); Surface shortwave downward flux (W m-2); Shortwave radiative forcing at the surface and top of atmosphere (W m-2); ageingscale (s-1) <b>DATA-SPECIFIC INFORMATION FOR: CERES_vs_2expts_new.mat</b> <i>1. Number of variables:</i> 12 <i>2. Number of cases/rows:</i> NA <i>3. Variable List:</i> Surface shortwave downward flux for clear sky (W/m-2) for CERES, Expt_fix, Expt_dyn (for winter JF and monsoon JJAS seasons); Surface shortwave downward flux for all sky conditions (W/m-2) for CERES, Expt_fix, Expt_dyn (for winter JF and monsoon JJAS seasons). <b>NOTE:</b> The following information applies for all three (3) files: <i> Missing data codes:</i> NA <i>Specialized formats or other abbreviations used:</i> NA
keywords: Carbonaceous aerosols; ageing parameterisation scheme; regional climate model; NetCDF
published: 2021-08-05
 
This geodatabase serves two purposes: 1) to provide State of Illinois agencies with a fast resource for the preparation of maps and figures that require the use of shape or line files from federal agencies, the State of Illinois, or the City of Chicago, and 2) as a start for social scientists interested in exploring how geographic information systems (whether this is data visualization or geographically weighted regression) can bring new meaning to the interpretation of their data. All layer files included are relevant to the State of Illinois. Sources for this geodatabase include the U.S. Census Bureau, U.S. Geological Survey, City of Chicago, Chicago Public Schools, Chicago Transit Authority, Regional Transportation Authority, and Bureau of Transportation Statistics.
keywords: State of Illinois; City of Chicago; Chicago Public Schools; GIS; Statistical tabulation areas; hydrography
published: 2021-03-08
 
In a set of field studies across four years, the effect of self-shading on photosynthetic performance in lower canopy sorghum leaves was studied at sites in Champaign County, IL. Photosynthetic parameters in upper and lower canopy leaves, carbon assimilation, electron transport, stomatal conductance, and activity of three C4-specific photosynthetic enzymes, were compared within a genetically diverse range of accessions varying widely in canopy architecture and thereby in the degree of self-shading. Accessions with erect leaves and high light transmission through the canopy are henceforth referred to as ‘erectophile’ and those with low leaf erectness, ‘planophile’. In the final year of the study, bundle sheath leakiness in erectophile and planophile accessions was also compared.
keywords: Sorghum; Photosynethic Performance; Leaf Inclination
published: 2019-09-17
 
Trained models for multi-task multi-dataset learning for text classification as well as sequence tagging in tweets. Classification tasks include sentiment prediction, abusive content, sarcasm, and veridictality. Sequence tagging tasks include POS, NER, Chunking, and SuperSenseTagging. Models were trained using: <a href="https://github.com/socialmediaie/SocialMediaIE/blob/master/SocialMediaIE/scripts/multitask_multidataset_classification_tagging.py">https://github.com/socialmediaie/SocialMediaIE/blob/master/SocialMediaIE/scripts/multitask_multidataset_classification_tagging.py</a> See <a href="https://github.com/socialmediaie/SocialMediaIE">https://github.com/socialmediaie/SocialMediaIE</a> and <a href="https://socialmediaie.github.io">https://socialmediaie.github.io</a> for details. If you are using this data, please also cite the related article: Shubhanshu Mishra. 2019. Multi-dataset-multi-task Neural Sequence Tagging for Information Extraction from Tweets. In Proceedings of the 30th ACM Conference on Hypertext and Social Media (HT '19). ACM, New York, NY, USA, 283-284. DOI: https://doi.org/10.1145/3342220.3344929
keywords: twitter; deep learning; machine learning; trained models; multi-task learning; multi-dataset learning; classification; sequence tagging
published: 2020-08-19
 
This data set is a matrix of values. The element in the row "i" and the column "j" denotes the influence of hexagonal pyramidal distribution at node "i" on the node "j". The size of the matrix is 16641x16641. This matrix corresponds to a 129x129 grid. Influence coefficient matrix on a smaller grid can be obtained by appropriately choosing the elements from the bigger matrix.
keywords: Influence coefficients
published: 2021-03-14
 
This dataset contains all the code, notebooks, datasets used in the study conducted to measure the spatial accessibility of COVID-19 healthcare resources with a particular focus on Illinois, USA. Specifically, the dataset measures spatial access for people to hospitals and ICU beds in Illinois. The spatial accessibility is measured by the use of an enhanced two-step floating catchment area (E2FCA) method (Luo & Qi, 2009), which is an outcome of interactions between demands (i.e, # of potential patients; people) and supply (i.e., # of beds or physicians). The result is a map of spatial accessibility to hospital beds. It identifies which regions need more healthcare resources, such as the number of ICU beds and ventilators. This notebook serves as a guideline of which areas need more beds in the fight against COVID-19. ## What's Inside A quick explanation of the components of the zip file * `COVID-19Acc.ipynb` is a notebook for calculating spatial accessibility and `COVID-19Acc.html` is an export of the notebook as HTML. * `Data` contains all of the data necessary for calculations: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; * `Chicago_Network.graphml`/`Illinois_Network.graphml` are GraphML files of the OSMNX street networks for Chicago and Illinois respectively. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; * `GridFile/` has hexagonal gridfiles for Chicago and Illinois &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; * `HospitalData/` has shapefiles for the hospitals in Chicago and Illinois &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; * `IL_zip_covid19/COVIDZip.json` has JSON file which contains COVID cases by zip code from IDPH &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; * `PopData/` contains population data for Chicago and Illinois by census tract and zip code. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; * `Result/` is where we write out the results of the spatial accessibility measures &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; * `SVI/`contains data about the Social Vulnerability Index (SVI) * `img/` contains some images and HTML maps of the hospitals (the notebook generates the maps) * `README.md` is the document you're currently reading! * `requirements.txt` is a list of Python packages necessary to use the notebook (besides Jupyter/IPython). You can install the packages with `python3 -m pip install -r requirements.txt`
keywords: COVID-19; spatial accessibility; CyberGISX
published: 2024-03-01
 
This dataset contains model output from the Community Earth System Model, Version 1 (CESM1; Hurrell et al., 2013) and variables from the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis v5 (ERA5; Hersbach et al., 2020). These data were used for analysis in “The location of large-scale soil moisture anomalies affects moisture transport and precipitation over southeastern South America”, published in Geophysical Research Letters. Acknowledgments: This work was supported by NSF Award AGS-1852709. We acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the NSF. We thank Dr. Haiyan Teng for providing guidance on setting up the CESM experiments and offering valuable advice. References: Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 146: 1999–2049. https://doi.org/10.1002/qj.3803 Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A Framework for Collaborative Research. Bull. Amer. Meteor. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1
keywords: atmospheric sciences; climate modeling; land-atmosphere interactions; soil moisture; regional atmospheric circulation; southeastern South America
published: 2020-07-15
 
This repository includes scripts and datasets for the paper, "Polynomial-Time Statistical Estimation of Species Trees under Gene Duplication and Loss."
keywords: Species tree estimation; gene duplication and loss; identifiability; statistical consistency; quartets; ASTRAL
published: 2023-03-27
 
This dataset contains the full data used in the paper titled "Enabling High Precision Gradient Index Control in Subsurface Multiphoton Lithography," available at https://doi.org/10.1021/acsphotonics.2c01950 . The data used for Table 1 can be found in the dataset for the related Figure 8. Some supplemental figures' data can be found in the main figures data: Figure S2's data is contained in Figure 6. Figure S4 and Table S1 data is derived from Figure 6. Figure S9 is derived from Figure 7. Figure S10 is contained in Figure 7. Figure S12 is derived from Figure 6 and the Python code prism-fringe-analysis. Figures without a data file named after them do not have any data affiliated with them and are purely graphical representations.
published: 2020-05-31
 
This repository includes a simulated dataset and related scripts used for the paper "Moss: Accurate Single-Nucleotide Variant Calling from Multiple Bulk DNA Tumor Samples".
keywords: Somatic Mutations; Bulk DNA Sequencing; Cancer Genomics
published: 2020-04-20
 
Supplemental data sets for the Manuscript entitled "Contribution of fungal and invertebrate communities to mass loss and wood depolymerization in tropical terrestrial and aquatic habitats"
keywords: Coiba Island; wood decomposition; cellulose; hemicellulose; lignin breakdown; aquatic fungi
published: 2020-06-19
 
This dataset include data pulled from the World Bank 2009, the World Values Survey wave 6, Transparency International from 2009. The data were used to measure perceptions of expertise from individuals in nations that are recipients of development aid as measured by the World Bank.
keywords: World Values Survey; World Bank; expertise; development
published: 2024-03-09
 
Hype - PubMed dataset Prepared by Apratim Mishra This dataset captures ‘Hype’ within biomedical abstracts sourced from PubMed. The selection chosen is ‘journal articles’ written in English, published between 1975 and 2019, totaling ~5.2 million. The classification relies on the presence of specific candidate ‘hype words’ and their abstract location. Therefore, each article might have multiple instances in the dataset due to the presence of multiple hype words in different abstract sentences. The candidate hype words are 36 in count: 'major', 'novel', 'central', 'critical', 'essential', 'strongly', 'unique', 'promising', 'markedly', 'excellent', 'crucial', 'robust', 'importantly', 'prominent', 'dramatically', 'favorable', 'vital', 'surprisingly', 'remarkably', 'remarkable', 'definitive', 'pivotal', 'innovative', 'supportive', 'encouraging', 'unprecedented', 'bright', 'enormous', 'exceptional', 'outstanding', 'noteworthy', 'creative', 'assuring', 'reassuring', 'spectacular', and 'hopeful'. File 1: hype_dataset.csv Primary dataset. It has the following columns: 1. PMID: represents unique article ID in PubMed 2. Hype_word: Candidate hype word, such as ‘novel.’ 3. Sentence: Sentence in abstract containing the hype word. 4. Abstract_length: Length of article abstract. 5. Hype_percentile: Abstract relative position of hype word. 6. Hype_value: Propensity of hype based on the hype word, the sentence, and the abstract location. 7. Introduction: The ‘I’ component of the hype word based on IMRaD 8. Methods: The ‘M’ component of the hype word based on IMRaD 9. Results: The ‘R’ component of the hype word based on IMRaD 10. Discussion: The ‘D’ component of the hype word based on IMRaD File 2: hype_removed_phrases.csv Secondary dataset with same columns as File 1. Hype in the primary dataset is based on excluding certain phrases that are rarely hype. The phrases that were removed are included in File 2 and modeled separately. Removed phrases: 1. Major: histocompatibility, component, protein, metabolite, complex, surgery 2. Novel: assay, mutation, antagonist, inhibitor, algorithm, technique, series, method, hybrid 3. Central: catheters, system, design, composite, catheter, pressure, thickness, compartment 4. Critical: compartment, micelle, temperature, incident, solution, ischemia, concentration 5. Essential: medium, features, properties, opportunities 6. Unique: model, amino 7. Robust: regression 8. Vital: capacity, signs, organs, status, structures, staining, rates, cells, information 9. Outstanding: questions, issues, question, challenge, problems, problem, remains 10. Remarkable: properties 11. Definite: radiotherapy, surgery 12. Bright: field
keywords: Hype; PubMed; Abstracts; Biomedicine
published: 2020-05-17
 
Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying Our approach is described in our paper titled: Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper.
keywords: Social Media; Trolling; Aggression; Cyberbullying; text classification; natural language processing; deep learning; open source;
published: 2023-06-01
 
This dataset contains four real-world sub-datasets with data embedded into Poincare ball models, including Olsson's single-cell RNA expression data, CIFAR10, Fashion-MNIST and mini-ImageNet. Each sub-dataset has two corresponding files: one is the data file, the other one is the pre-computed reference points for each class in the sub-dataset. Please refer to our paper (https://arxiv.org/pdf/2109.03781.pdf) and codes (https://github.com/thupchnsky/PoincareLinearClassification) for more details.
keywords: Hyperbolic space; Machine learning; Poincare ball models; Perceptron algorithm; Support vector machine
published: 2022-08-31
 
This dataset includes data on soil properties, soil N pools, and soil N fluxes presented in the manuscript, "Refining the role of nitrogen mineralization in mycorrhizal nutrient syndromes". Please refer to that publication for details about methodologies used to generate these data and for the experimental design. For this verison 2, we added specific gross nitrogen mineralization rates (ugN/gOM/d), microbial biomass carbon (ugC/gdw), microbial biomass nitrogen (ugN/gdw) and microbial biomass C:N ratios to the newest version of the data set. Additionally, we updated values for gross nitrogen mineralization, microbial NO3 assimilation and microbial NH4 assimilation to reflect slight changes in data processing. Those changes are reflected in "220829_All data_repository.csv". "220829_nitrogen_mineralization_readme.txt " is updated readme for the new file. The other 2 files begin with “220426_” are older version and same as in V1.
keywords: Nitrogen cycling; Ectomycorrhizal fungi; Arbuscular mycorrhizal fungi; Nitrogen fertilization; Gross mineralization
published: 2023-07-01
 
This is the data used in the paper "Assessment of spatiotemporal flood risk due to compound precipitation extremes across the contiguous United States". Code from the Github repository https://github.com/adtonks/precip_extremes can be used with the data here to reproduce the paper's results. v1.0.0 of the code is also archived at https://doi.org/10.5281/zenodo.8104252 This dataset is derived from NOAA-CIRES-DOE 20th Century Reanalysis V3. The NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 3 used resources of the National Energy Research Scientific Computing Center managed by Lawrence Berkeley National Laboratory which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and used resources of NOAA's Remotely Deployed High Performance Computing Systems.
keywords: spatiotemporal; CONUS; United States; precipitation; extremes; flooding
published: 2022-05-20
 
This dataset includes images and annotated counts for 150 airborne pollen samples from the Center for Tropical Forest Science 50 ha forest dynamics plot on Barro Colorado Island, Panama. Samples were collected once a year from April 1994 to June 2010.
keywords: aerial pollen traps; automated pollen identification; Barro Colorado Island; convolutional neural networks; Neotropics; palynology; phenology